Dewtronics

M6811DIS v1.0 (DOS

Code-Seeking Disassembler for the Motorola MC68HC11
Microprocessor

Version 1.0 of Software written April 15, 1996 © Donald Whisnant
Documentation for version 1.0 written September 27, 1998 © Donald Whisnant
Last Update: June 28, 1999

Table Of Contents

TaDIE OFf CONLENES.ceiiiiiiiiiieie i et e ceeei e e e e e e e e e e e e e seeeseeeeseseessasssssssssssssannsasasasasaaaasaaeeeeaeeessnnsrereres 2
T (oo W o1 oo R RPRPRRPPRP 3
1S = = (o o P 5
L1 o R 6
(@Y= VL= T P 6
Step-by-Step WalK-THroUQGN..........oeiiiiiiiiiie e eee e e e e e e e eeeaeee e e e s annrnreees 7
CONLIOl FILES ...t eeeet bbbt eeeeeeeeeeeeeeeeeeeeeeeese e e s mnm e aaasasesesesasasasasasannnssssssrereres 15
= 0] FSX @] o o) T OO ERRR 16
CONLrOl FilE COMMANGS. ... uuuieieieieeeeeieeeeeteeee e e e e e et e e e e e e e et e e e et e e e e s e saseasaseaanssssssssrssesssssrenees 18
Y1 (e g O] 10101 0T PO 18
ADDRESSES ... oottt e ee et et et ettt ettt ettt rta———a e aeaaaaaaaaaaaaaaaaaaaaaans 18

F N O | PP PP 19
OPCODES.......cooieeeet ettt eeee et aae e et et eesaeeaeseseeasasassa e aeaeaeaaaaaaaaaaeaeaaaeeeenrares 20

A= U YO0 401 1= 0 (o S 21

IN PU T L.ttt ettt e e e et e e et et e e e eeeeeesaa e s e aesebabebe b et bbb b e e e eeeeaeaeaeaeseseeeeeeesnnnnnnns 21

@ AN B TP PP 22

(O 11 1 = U N PR 23

LiSt ENtry COMMENOSuuvviiiiiiiiiieiieeseeseeeeeeees e e e s ssseatreeeeeeeeeeeeeeeessasnsbeaereraeesssaaaeessasnnssnnneeeaaeans 24

[N I A 2SRRI 24

IN DI RECT ..stttttiiiie it ettt eeee ettt ettt aeeaeeeeeeeeeeeesereeseeererersnnnnns 25
AN =1 = PP PP 26

Error and WarniNg MESSA0ES.oeeieeeeieeiietteeieeesteteeeeeeeeessaasstaeeementaeeeeeaeeesasssteaaeeeaeaeneeeaeessssnssnrenes 27
0 AV =T T U 27
RTAT e T Lo Y =S o - S 28

D TES= 3 = 0] o] Y 1 = SR 30
(00010 SN 10 [19T=] DT v- FO PRSP 30
Undetermingd BranCh AGQOrESS......uuuueieie ettt ettt ettt et e et e e e e e e et e e e e e e e eensesaseseaeees 31
AddresES aS IMMEAIALE VAIUBS.oiiiiieieieieeeeeeeme ettt et e e et e e e e e e e s e s e e e e e e e s eeeavaseaeaeaes 31
(000 L= == T o P EEEREUR 32
=V 1= PP 33
(0191 £ P RPRP PP 33
IMICEBHCLL OVEIVIBW ...uvvvtiieeieeeeeeeeeeeetteeee e e e e e e e e e e e e e e eeee e e e et e s senaaa e aessasasaaasssssssssssssssssssrsssrsrsnns 34
ReaBEMDIiNG aDISASEMDIY ... ee e eee e e e e e e e s e st e e e e e eeeeeraeeeeeanrnreees 38
LimitationSin TRISVEISIONuuviiiiiiii ettt e e e e e e e e eeeeeeeeseeeseseeees 39
2 T T PP 40
0 0T o P 41
ThE DISBST MGeiteiieie ettt e e e e et e e e e eeeeeeeeeererreaerennnas 41

YKo (o] (0] K- U PUUOUOUPSPPPRt 41
Third Party (ASSEMBIENS, BIC) ...vvviiiiiiiiiie e eee s e e e e e e s e b nmnr e reaaaee s 41
FULURE W BISIONS. ...ttt et e e e ettt eee e e e e e et e e e e e e e e e e e e e e e e e e eee bbb aaesseeseeeeseessssssssssessrnnnnsesenessd 43

Page 2 of 44

Introduction

A disasembler is aprogram that takes binary memory images and/or objed code data fil es and converts
them into the mnemonic equivalents for the processor the amde was developed for. It is ort of like
decompili ng code except that if the original code was written in ahigher level language (languege other
than assembly), you only get the equivalent assembly code rather than the language the original code was
written in.

So what isa disassembler good for? The primary use for adisasembler isto either reverse-enginee or
hadk aprogram. Inthe redm of software, typicdly reverse-engineaing involves taking an entire program
apart to figure out exadly how it functions, usually in an eff ort to understand the overall system and
possbly improve upon it or otherwise extend itsuse. Hadking, on the other hand, typicdly involves taking
aprogram apart only to the extent of finding one or more particular items of interest usually to modify those
parts to achieve some goal, whil e not necessarily trying to gain afull working krowledge of how the whole
system works. An example of reverse engineeingwould be a @mplete disasseembly of a vehicle ECM
cdibration to write out a mmplete description of the cntrol algorithms used by the vehicle momputer. An
example of hadkingwould be disassembling that code only enoughto find one or two numbers that contain
the speed-limiter on the vehicle, without getting aworking krowledge of how this gpeed-limiter actually
works. There aetimesand places for both reverse-engineaing and hading and even combinations of the
two. To any extent, one of the primary tods used by both hadkers and reverse-engineasisthe
disassmbler.

What is a code-seeking disassembler and why isit so special? Any binary program image, espedally
those for processors using Von Neumann architecure, will contain a mix of program bytes and data bytes.
Traditional disasemblerstypicdly start at the first addressof the binary image and disassemble to the end
of the binary image treaing everything as code. In the end, you end up with afile that contains most of the
corred code mixed with lots of garbage from the data. Sometimes thisisn't a problem, espedally if the data
aress are small and very distinguishable. But, depending on the processor’s opcode list, it can cause the
disaseembly in the good code sedions to be skewed —resulting in several incorred and/or incomplete
opcodes that later have to be disassembled by hand. Thisiswhere the mde-seeking disassembler comesin
handy.

Unlike the typicd “disassemble everything’” method o the traditional disassembler, the amde-seeking
disaseembler adively seeks out and disassembles fdionsthat it sees as code whil e learing the rest tagged
asdata. Thisisachieved by giving the disassembler one or moreinitia entry addressesinto the mde. From
these entry points, the disassembler continues to foll ow throughthe code asit hits jumps, branches, and
returns. Inthe end, you should have aperfed separation of code ad data. There ae some wmplicaionsto
this. For example, what happens on ajump instruction that uses aregister to oktain the aldressof the
branch, such asis common with ajump table? The disassembler has no way of knowing exadly what the
content of the register is, so it isforced to label the jump instruction as an “undetermined branch”. Such
tables have to be located by the user and added as additional entry points for the disassembler. Also,
suppaose you don't enter al possble entry points — the result will be afile with hunks of code interpreted
incorredly asdata. And there ae caes where there ae unused hits of code that never get exeauted —those
will remain tagged asdata. But overall, the mde-seeking disassembler isfar superior to its traditi onal
counter-part and in many cases, with littl e user intervention, can produce aperfed separation of code and
datawhich grealy fadlit ates the reverse-engineaing and/or hadcing of the target code.

Isthe disassembler output important? For hadkers, the answer is“no”. Thisisbecause ahader isonly
interested in the mde to the extent of finding the part(s) to achieve hishad. But, for the reverse-enginee,
it isavery important asped. Often after reverse engineeinga program, it is desired to resseemble the ade
either inits origina form (to test integrity and validity) or in an altered form after enhancements have been
made. Many disaseemblers don't addressthisisaie and produce a output that isn't compatible with any
existing assembler, resultingin hours of editing and reworking to get the mde in the crred form. This
disaseembler solves the problem by targeting a spedfic assembler. With the spedfied assembler, it is
guaranteal that the output from the disassembler, when reaseembled will result in the original binary. The

Page 3 of 44

asembler this disasembler targetsisthe AS6811written by Alan Baldwin at Kent State University’s
Physics Department (not to be confused with the M otorola AS11 freeware assembler). Alan'sentire
assembler set and relocating linker is asuperb pieceof workmanship, which iswhy it was chosen as the
target output form for this disasembler. SeeReassembling a Disassembly later in this document for more
information on this asembler.

What else you need to know. Inorder to make sense out of the output from this disassembler and to
effedively use this program, it is necessary to first famili arize yourself with the MC6811microprocessor
and have an urderstanding of assembly language and techniquesin general. Such instruction is outside the
scope of this document. For it, | refer you to dacuments such as the “M68HC11 Reference Manual”

avail able from Motorola & document M68HC11RM/AD. And the processor-variant spedfic pocket
reference guides, such asthe “MC68HC11F1 Programming Reference Guide” and “MC68HC11E9
Programming Reference Guide” will comein handy as well —the Motorola part numbers for these
documents are MC68HC11F1RG/AD and MC68HC11E9RG/AD, respedively. The one(s) you will need
will be dependent upon the particular processor used by the device under study. For other variants of the
HC11, the document number istypicdly MC68HC11 foll owed by the variant code and then “RG/AD”.
Tedhnicd datareferences for aspedfic series are dso available. These typicdly have document numbers
of M68HC11 followed hy the series code followed by “/D”. Examples of these ae“MC68HC1IN/D” for
the “N-Series’ and “MC68HC11F1/D” for the F1 series. All of these documents are avail able from

Motorola’ s website (WWW.MOL-SPS.coM) and can either be downloaded as .pdf files or ordered in
printed form.

You will also need amethod o obtaining the original binary that you wish to disassemble. Again, that is
outside of the scope of thisdocument. To oltain the binary, you will probably need to oltain an EPROM
burner and/or reader. This document assumes that you've dready obtained the target code and have saved
it asabinary format file. Thisversion of M6811DIS only supparts binary sourcefiles. Future versions will
include suppart for other formats.

In this document, as well as the disassembler output, hexadedmal values are expressed by prepending them
with “0x”.

Page 4 of 44

Installation

Install ation of the M6811DIS program is smple and straightforward. Simply creae adirecory for the
program and place # of the distributed filesin that directory. The airrent method d file distribution is
PKWare's PK-ZIP version 2.04G. If you are ingtalli ng from that zip file, then you'll obviously need to
have a opy of the unzip toadl. If you don't already have a ©py, it can be downloaded from

WWW. pkware.com. Chances areif you are reading this document, you aready have that todl, sincethis
document is also zipped with the other files and placed into the M6811DIS.ZIP archive.

Once dl of thefiles are placal into asingle diredory, you can simply change to that directory and runthe
program. Note that you can runthe program from a path in your path-statement, but the M6811DIS.OP file
that is used with this version must reside in the arrent diredory at the time the program isrun. This means
if you use the system path to exeaute the program from a different direcory, you must first copy the .OP file
to the arrent diredory prior to runring the program. Future versions of this program will do away with the
.OP file and eliminate the need for copyingit al over the place

The foll owing fil es are distributed with this version (1.0):

* M681IDISEXE — The main program exeautable.

e M681IDIS.OP — The opcodes file used by the exeautable.

« M6811IDIS.DOC — Thisdocument in MS-Word 97 Format.

+ M6BLIDISTXT — This document in Plain-Text Format.

« M681IDISPS — This document in PostScript Format.

+ MG681IDIS.PDF — This document in PDF Format.

* AV94BNBH.CTL —A sample oontrol fileto get your started.

« PORTSFLASM — Assembler file for the F1 HC11. Used when reasssembling (AS6817).
« PORTSFLH —Includefile for the F1 HC11. Used when reassembling (AS6811).

e PORTSE9.ASM — Assembler file for the E9 HC11. Used when resssembling (AS6811).
* PORTSE9.H —Includefile for the E9 HC11. Used when reaseembling (AS6811).

Note that the “PORTS’ fil es have nothing to dowith the disassembly processitself and are not needed to
successully disassmble afile, but they are rather useful when reassembling the disasseembled code. They
are written to work with Alan Baldwin’'s AS6811 dsasembler, asis the output of the disassembler. The F1
and E9 areincluded because they are the most common variants of the HC11.

Page 5 of 44

Usage

Overview

As mentioned in the introduction, this disasembler isa mde-seeking disassembler. Therefore, itis
necessary to spedfy al code entry addresses and indired vedors (such as interrupt vedors) used in the
target code. A minimum of only one entry addressis required, but often it is necessary to speafy multiple
entry points and/or indired vedors, and it is also desirable to be &le to spedfy meaningful names, or
labels, for these. It would be aumbersome to have to spedfy these eat time on the cmmand line, not to
mention the fad that you'd run out of command-line space Therefore, the entering of these entry-poaints,
labels, and indired-vedorsis done with a“Control File”.

First, use atext editor of your choice and creae a ontrol file for the file you wish to dsasemble. The
sedion entitled “ Control Files’ in this document describes the exad format and avail able commands to use
in credingthe Control File. A sample Control Fileisincluded there s well asin the distribution. Asa
very minimum, your Control File should include an “input” statement and an “output” statement to spedfy
source and destination fil es, respedively. And, it should include & least one entry paint, in some form, for
the de disassembly. If no entry points are spedfied in the Control File from either “entry” statements or
“indired” statements, the load addressof the file is assumed to be an entry paoint. If the “input” and
“output” statementsin your Control File do not spedfy full paths, the aurrent directory will be used.

With your Control File complete, bring yp a DOS window (or runthe machine in DOS mode), and enter
“m6811ds’ followed hy the name of the Control File that you used, from within the proper diredory. It is
recommended that you use the extension of “.ctl” for your Control Fil es, thoughthis version will not
append the “.ctl” should you fail to spedfy it with the filename on the command line. Therefore, if you use
the “.ctl” extension, you must type it with the filename. Future versionswill make better use of the “.ctl”
extension. Oncerun, the disasseembler will first display its findings from parsing the spedfied Control File,
and then it will | oad the sourcefile, resolve any spedfied indireds, and disassmble the sourcefile to the
spedfied output file.

During the disassembly process the disassembler will display any labelsthat are aeaed during the
disaseembly process as well as any warning or error messages. Labels are aeaed anytime adired
extended memory referenceis encountered, regardlessof whether it is an absolute or relative aldress For
example, suppose aprogram contains a cmmand to load the ‘ X-register’ from the dired addressof
0x103A. Thiswould correspond to the instruction “Idx 0x103A”. Thelabel “L103A” will be attomaticdly
creaed and asdgned to addressOx103A and the disassembler will output “ldx L103A”. If the aldress
wasn't included within the loaded fil e range, the disassembler will also output an equate of “L103A =
0x103A” so that the assembler will know that L103A is equivalent to the value 0x103A during re-assembly.
If the addresswas within the loaded fil€' s range, then the output line mincident with that addresswill be
prepended with the label followed by a mlon—such as“L103A:". However, if the load instruction was an
immediate value, rather than an address such as the instruction “1dx #0x103A”, the assembler will not
asdgnalabel for 0x103A. The disassembler can only asume, in thislatter case, that 0x103A isa mnstant
value and has no addressrelevancy. This may or may not be the cae. If it does have aldressrelevancy,
then you must manually rename it in the output file using a search and replace In most programs,
immediate values are usually just constant values, but occasionaly you'll runinto onethat is an address
typicdly loaded into an index register, for indiredt addressng in subsequent instructions.

If you wish to use more meaningful names other than somethinglike “L103A”, then you should add “label”
commands to the Control File and rerunthe disassembler. The disassembler will then use the spedfied
label for the spedfied address rather than making wp its own “Lxxxx” label. However, on this version of
the disasembler, labels are limited to no more than six (6) charaders. Future versionswill suppart longer
label sizes.

Page 6 of 44

The disasembler is atwo-passdisasembler. Duringthe first pass it iterates throughthe spedfied list of
entry addresses tagging those locaions as code. For eat entry address it continues to tag successve
addresses as code urtil it reades an instruction that ends that code sedion — such as an urconditional jump
or areturn-from-subroutine (RTS) statement. Whenever ajump (or branch) is encountered, the target
address if it is determinable (that is, isn’t dependent on a register value or other unknown value), is added
tothelist of entry points. This processcontinues until all entry pointsin the list have been exhausted.
During the seaond pass it iterates over the entire length of the memory image and writes the output
disasembly file. All addresses that were tagged as being code during the first passwill be outputted as
code, otherwise, they will be treaed as data and outputted as either binary or ASCII data (depending on
Control File settings and byte values).

The screen output during the disassembly process containing rew labels and disassembly warning
messages, is ent to “stdout”. This allows the output to be redireded into alog file for later referenceusing
the stdout redired operator (“>") on the cmmmand line — refer to DOS documentation on how to do
input/output rediredion and piping.

Step-by-Step Walk-Through

Here is an example dump of the screen output produced while runing M6811DIS with the sample Control
File shown in the Control Files sedion, cgptured by using a stdout rediredion. It is siown herein its
entirety because this it avery typicd ill ustration of what most disassembly runswill belike and it al ows us
to describe and explain what ead part of the screen output isfor:

M6811 Disassembler V1.0
Copyright(c)1996 by Donald Whisnant

Initializing...
Reading Control File...
Load Address: 0x4000
16 Entry Points:
0x7C0B
0x7C12
0x7C1C
0x7C22
0x7C35
0x7C6B
0x7C7C
0x7C83
0x7C9C
0x7CAQ
0x7CAA
0x7CAE
0x7CBE
0x7CC2
0x7CCC
0x7CDD
Source File: AV94BNBH.BIN
Destination File: AV94BNBH.DIS
21 Labels Defined:
OxFFD6=SCIVEC:
OxFFD8=SPIVEC:
OxFFDA=PAIEVE:
OxFFDC=PAOVEC:
OxFFDE=TOVFVE:
OXFFEO=TI405V:
OxFFE2=TO4VEC:
OXFFE4=TO3VEC:
OxFFE6=TO2VEC:
OXFFE8=TO1VEC:
OXFFEA=TI3VEC:
OXFFEC=TI2VEC:
OxFFEE=TI1VEC:
OxFFFO=RTIVEC:
OxFFF2=IRQVEC:
OxFFF4=XIRQVE:
OxFFF6=SWIVEC:
OXFFF8=ILOPVE:
OxFFFA=COPVEC:
OXFFFC=CMONVE:
OXFFFE=RSTVEC:
Writing program counter addresses to disassembly file.
Reading Opcodes File...308 opcodes read.
Reading Source File...File Size: 0xC000
Compiling Indirect Branch Table as specified in Control File...
[OXFFD6] -> 0xF494 = SCIRTN
[OxFFD8] -> OXF8EE = SPIRTN
[OXFFDA] -> OxF8E4 = PAIERT
[OXFFEO] -> 0x7922 = TI405R
[OXFFE2] -> 0x7986 = TO4RTN
[OXFFE4] -> Ox79EA = TO3RTN
[OXFFES6] -> 0xF8D9 = TO2RTN

Page 7 of 44

[OXFFES] -> OXCC8A = TOIRTN
[OXFFF2] -> 0x7597 = IRQRTN
[OXFFF4] -> 0xF8B3 = XIRQRT
[OXFFF6] -> OXF8AE = SWIRTN
[OXFFF8] -> 0XF8C4 = ILOPRT
[OXFFFA] -> OXF8C9 = COPRTN
[OXFFFC] -> OXF8CE = CMONRT
[OXFFFE] -> 0XF8D3 = RESET

Pass 1 - Finding Code, Data, and Labels...
LC3BA LCD23 LC3CE LC4B3 LAE65 LEEAA LF26C LD425 L7C31
L7C34 LC6D1 L0002 L7C4A LE860 LE893 LC6F6 LC71D L7C59
LD2D7 LD399 L7C7B LC506 LC923 LCC1E L7C8C L7C8F LCCC9
LCE3D LA386 LD414 LD1D9 L7CBA L7CBD LCA43 LCACF LD9BB
LDA49 LO2BE L7CD9 L0004 L7CDC L7CE6 L7CE9 LF4A4 LF4CB
LF5B5 L3024 L3025 L7972 L0046 L7954 L0273 L025D L7942
L7945 L0825 L7962 L79D6 L79B8 L79A6 L79A9 L0827 L79C6
L301A L3023 LOO0O L0044 L7A05 LF705 L3022 L3FC8 L0226
LCCOC L0062 LCCC8 LCCBD LCCC5 L759E LF8BB LF8B1 LF8C7
LF8D6 LF8D1 L7200 LEF12 LEEFC L0055 L0130 LCD2C L0118
LCD41 LO12E LOO7F LCD78 LC3F1 L0316 LC454 LC4C4 LO01B
LC4D1 L400F LAE6F LAF16 L082D L0192 LO82F LOO9F LOOAL
LEEFB L0082 LF273 L1806

*** \Warning: Branch Ref: 0x1806 is outside of Loaded Source File.
LOFOO LE444 LE46C LE45C L0080 LOOD3 LD491 LDSFE LD444
LD478 LC32A LEC80 LECCD LEAEE LEB2F LEB70 LE7EF LE82B
LEA28 LE8BC6 LE8SC7 LE8C8 LESFC LE50E LE542 LC78A LC7EOQ
LC805 LOO6F L0016 L7C63 L0017 L7C6A LO03B LE892 LEBSE
L0165 LE882 LE8B8F LEBC5 LE8SC1 L0166 LE8B5 LE8C2 L0043
LC706 LOO4E LC717 LC71A LOOAE LC72A LC732 LC734 LOOAF
LFOD3 L672E L0083 LC74B L672D LC754 LOOA3 L5D28 LC75F
L5D29 LC767 L5D2A LC770 LC787 LD2E1 LD398 LD3A2 LD3C6
L0088 LC51D LO09C LC530 L0087 LC529 LC543 LC53C L0096
LC54A LC55D L0183 L0085 LC55A LC569 L0182 LC575 L0122
L0089 LC595 LC58E LOOD1 LC5A3 LC5B1 LC5E2 LE434 L0092
LC5D5 LC5C4 LC5D2 L0050 LC93B LC93E LCC89 L022C L0019
LCC72 L0006 L45AC LCC86 LO1E3 L45AD LO1E5 LCC44 L45AE
LO22F L45B0 LCC66 L45AF L0052 LCC5D LCC78 LF279 L9F7C
LC879 LAD62 LCCE9 LF15E LCCEO LCCE6 L5B03 L4E6B LCDOB
L4E6C LCD1D LO22A L4E6A LCD18 L400B LCE55 L0253 LOO6E
LCE52 LCEBO LO2A5 LCE64 LCE6A LOO4F LA38D LA4DC L0812
LO2A7 LD1EO LD2D6 LCAS56 L48B4 LO1F3 LO1F8 LCAS59 L4E7F
LFOF6 LCAE8 LCB3A LOOF8 L4E3B LDA32 LD9FE L4E37 L0240
L4E38 LDAO3 L4E3D LDA06 LDA53 LDA60 L0071 LDAB5 LC30B
LE3ED LE4B9 LE046 LF4B1 LF4CC L302E L302F L0364 L0369
LF5E3 L0363 L0362 LF5FF LF5DB LF5E5 LF660 L0821 L7983
L795D L0823 L79E7 L79C1 LOO3A L7A17 L7A14 L0003 L7A20
L7A3B L0391 L0072 L0392 L9286 LF08B LO82E L7A73 L7A70
LAESF LO1FC LF137 L4ESE L4139 L0047 L7A7D L4138 LO1E6
LO1E9 L3030 L7A95 L3031 L3032 L3033 L3034 L0148 LEEE2
L7CF6 L3FFA L0073 L7AD4 L3FC4 L080OD LO80C L0146 L3068
L7E04 L7B00 L7AFF L7AF7 L4953 L0051 L7BOF L7B11 LOO1A
L7B2D L7B7C LADOC L303A LF72C LF72D L0366 LF749 LF081
LF753 L0001 LO390 LF771 L0230 L300E L3016 L75C3 L306F
L75DB L75E2 L76FD LCA8A L306E L723A L3FFC LFO8A L725B
LEF9A L7282 L72C3 LOOAQO L7548 LEF11 LEF04 L0093 LCD4A
LCE3C LC44A L0317 LC464 LC40D L0061 L4153 LCA45F L4154
L4158 L4155 L0201 LC42E L4156 LC440 LF17B LC451 L4157
LC46B LC4D5 L0018 LC503 LAE8B L5151 LAE99 L5155 L0853
LAFOD LO01D LE458 LE454 LE47C LE478 LE468 LD4D9 LD4A4
LDACF LD90A LD906 LD908 LD8DC LD451 LD48C L019D LD4DA
LO04C LC348 LC35C LC361 LECCC LECCS8 L0169 L0084 LECAF
L0090 L0O01C L0026 LEDO9 LEDO5 LO16A LECF9 LOO8F L0027
LEB2E LEB2A L0175 L0098 LEB04 LEB1E L002B LEB6F LEB6B
L0176 LEB45 LEBSF L002C LEBBO LEBAC L0177 LEB86 LEBAO
LO02D LE82A LE822 L0162 LE814 L0091 LE85F LE85B L0164
LE84F LEA7A LEA76 L5B95 LEA4B LEA54 LESFB LE8F7 L0167
LESEB LE8F8 LE92F LE92B L0168 LE91F LE92C LE541 LE53D
L0159 LE531 LE5S3E LE575 LE571 LO15A LE565 LE572 LC79B
LOOA2 LC7AE LC7B1 LC7ED LC7F5 LC7F7 LO2A6 L0208 L0266
LC829 LOO3F LC83E L48D9 L48DE L0295 LO1EE LO1DE LC862
LC868 LF136 L0842 LC922 LFOEO LFOE4 L5D2B LOOA5 LD2EB
LD2EE LD3BO0 LD3C9 LOODC LC5EC L0127 LO10A LC622 LC606
L0086 LC603 LC6CA LE440 LC949 LCA42 L45B2 L45B3 L022D
L45B1 L1800 LF284 L180C

*** \Warning: Branch Ref: 0x180C is outside of Loaded Source File.
L9F83 LA370 LC8BF L0252 LC88C LC893 LAD6C LAE64 LF172
LF178 LCF37 LCE70 L9DEO L087B LA3BO L0O87C LA39F L4F27
LA3A5 LA3AD L4F26 L086B LA3DO LA3BC LA3CD L400C LD21A
L402C LD1FE L402D LO1F9 LD2CB L03B2 LCA61 LCA7C LCA80
LF100 LF103 LCAFE LCB2F LCB34 LCB3C L0855 LDA45 L4E3E
LDA2A L4E3F L0241 L4E40 LDA2F L024E LDA70 LDAC6 LO03C
L0239 LDAC2 LDFA8 LE6B4 LE74D LEC7F LEDOA LED63 LE9DC
LEAAE LEDD5 LEDD6 LEE44 LE410 LE3F3 LE088 LE085 L4E7E
LEO6C L4E7D LF4FC L0042 LF4F4 LF4E9 LO39B L0367 LF590
LF60F LF65A LF5EE LF5F5 LF6F7 LOOOA L9292 L929B LFO9A
L3060 L004B L3062 L3064 L004D L3067 LF13D LF15A LEEF6
L7D08 LO14A L0149 L7D8B L7EOE L7E17 L7E12 L7B51 L924A
LA53C LDO075 LD11D LF285 L7B49 LB773 L7BA9 L7BB7 L7BE6
L7BAC LAD59 L3FCO LOO5F L020B L4142 LAD2C LF1ED LAD44
LAD4B L3066 LF774 LF763 LF87E L0068 LOO6A L75F5 LO2FO
L75FF LO2EC L7743 L028B L770B LO2F1 L7720 LO81E L495A
LO28A L7740 L7786 L7767 L0053 L77C9 L0277 L7762 L77AF
L3061 L3063 L3065 LEFA8 LEFC2 L0005 L303F L72D2 L72EC
LCD58 LCD60 L5E8E LCD7B L5E8B LCD75 L5E8A LC47A LO1EF
L0207 L0206 LO1FO LO1F1 LC46E LF184 LF189 LF1B4 LF1BA
LC4DF LC4EC LOOA6 LAEA2 LAF02 L0854 LE49F LE486 LD4E3
L0180 LD4EB LD4F1 LD4F7 LD50F LD505 LD50D LD4B1 LD91B
LD92C L0099 LD927 LD932 LD8FA LD8FC LD46C LD854 LD8B7
LD47B LOO8BA LC364 LC37B LC383 LECC9 LEDO6 LEB2B LEB6C
LEBAD LE826 LE85C L0171 LEAG6A LEA77 LC7C6 L5B1A L5B18

Page 8 of 44

LC7C2 L5B1B LC7CA L4074 LD2FB LOO7E LD313 LC62E L0124
LC6BD LC614 LC611 LC6C2 L4022 LCI955 LC963 L4012 L0830
L4013 L0831 LC994 L997F L0009 L9FAD L4EB6 L4EB7 L02C6
LO2D0 L0887 L9FCD L0888 L50B5 L50B4 L9FCA L0038 L4E85
LOFD6 LAO1C L0036 LA37A LA382 LO86A L021D L45D0 LCBEO
LOO3D L029B LO21F L0841 L0843 LC90B LC91F LC8A4 LC8AD
LAD76 LAD8B L46FF LCF3E LCF48 LCE78 LCE82 L9DE9 L9DEB
L0882 L9E16 L5064 L9EOF L9EO1 L0884 L5065 L9E13 LI9E51
L085C LA400 LA3DC LA3FD L086C LA3C6 L4EAF LO1FB L402F
LD22B LO1FA L402B L0041 LD213 LD22E LF10D L4E82 LCB18
L029C L4E83 LCB37 LCB4B LCB66 LCB4E LOO3E LDA82 LDAAA
LDA9SE L024B L023C L023D LDEDA LDAD4 LE6E5 LE6DF LEGES8
LOOSE LO15F LE6E2 L0023 LE748 LE781 LE77B LE784 L0160
LE77E L0024 LE7EA LED62 LEDSE L016B LED32 L0028 LEDD3
LEDCF L016C LED81 LEA27 LEA23 LO16F LEA12 LE9F4 LOO2A
LEAED LEAES5 L0173 LEAD3 LEAE9 LEDFE LEDFC L0179 LEEOO
LOO1E LEE3F LOO2F LEE6C LEEG6A LO17A LEEGE L0030 LEEA5
LEOAD L0255 LEOA2 LEOAB L0259 L0279 LEOCB L024D L4E7B
LE082 L4E7C LF513 LF510 LF5B4 LF663 LF62E LF655 LF704
L302D L92A0 L4EAC L92E3 LO14E L7D17 L0147 L7D22 L7D2D
L7D35 L7D36 L014D L7D45 L7D51 L7D6B L7D79 L7DC6 LOOF6
L6925 L7DC4 L6927 L6926 L7DBF LOOF5 L7E2D L5D04 L7E23
L7E2E LCCO5 L7B6A L0393 L7B6D L9268 L9262 LA548 LA552
LO1EC LA562 LA56C L400D LDO083 LO1DC LD11C L0070 LD15A
LD12E LO1D1 LD1D5 LF2EA LF2E7 LF2CF LF2BF LCF65 LAF40
LB77C LB78B LAD5B LF7E3 L3FCC LF880 L3FEA L3FCE L3FDC
L3FF6 LF7B7 LF7CE LF7D0 L7873 L7626 LO2F2 L78D4 LO26F
L7629 L76D7 L7812 L0829 L7789 L4920 L77BF L77D5 L77F9
LO84E L7801 L78A4 LO81F L77BC LO82A LEFB2 LEF47 L4008
L4006 L72E5 L730C LOOOF LEFC3 L0015 L7308 L733C L5B24
L0319 LEF1D L7346 L735A L7351 L4133 L0219 LOO1F L736D
L5B1E L0020 L7379 L5B21 L0021 L7385 L5B42 L0022 L7391
L5B52 L739D L5B58 L73A9 L5B5E L0025 L73B5 L5B78 L73C1
L5B72 L73CD L5B74 L73D9 L5B79 L0029 L73E5 L5B8B L73F1
L5B8F L73FD L5B9D L7409 L5B9F L7415 L5BA1 LOO2E L7421
L5BA2 L742D L5BA8 L7439 L5BAE L0031 L7445 L5BB8 L7457
L7467 L0032 L7472 L0033 L747A L0034 L7482 L7499 LO1EA
L4950 L74CA L4951 L9341 LO1F5 LB24D LB185 LO1FF LO1FD
LO1FE L489B L01D8 L0193 L755E L4071 L750C L4072 L0078
L3FCA L0228 L3012 L0851 L48DD L026D L026B L0049 LEF2B
L4D8C LCD81 LCD98 LF1CA LF1D0O LC4F0 L5150 LAFO7 LAEB7
L5152 LAEBA LAF10 LD517 LD519 LD549 LD527 LD547 LD4C3
LD7FB LD869 LD879 LD886 LD895 LD8B5 LD8C3 LD8CE LD984
LD934 LC3A5 L691B LC39F L306A LC3B9 LO12F L306C LC7D6
LC7DC L4075 LD309 L4076 LO07C LO0O7B LD333 LD338 LOO7D
LD34D LD352 LC635 LC64A LC6DO LC96D LCICO L4019 LCOAD
L0833 L9986 L9AA7 L0037 LOFDD LAO5F LAOB4 LC916 L0844
L4140 LC8BB LADSE LAEO3 LAEO8 LCF49 LCF53 L1815

** \Warning: Branch Ref: 0x1815 is outside of Loaded Source File.
LCF64 L0395 L0396 LCEAO LCE93 LCE9D L9E20 L9E70 L5090
L9E6D L5091 L5092 LA432 LA421 LO2CC L4FBD LO2CA LOB5E
LA3EC LO27A L026A LD28D L4024 LD288 L4025 LD266 LD2A8
L4E80 L4E81 LCB75 LCB7F L3FDA LCB92 LCB95 LDA93 LDA74
LDAA2 LDAA7 LDEE1 LDFAB LDBOO LOOF9 L0014 L5B12 LDAF2
LDB72 LDB18 L4E28 L0158 LDB29 L4E29 LE74C LE6FE LO17B
LE749 LE7EE LE7AC LE796 LO17E LE7A7 LO17D LE7EB LOOES
LED5F LOOAC LEDAA LEA24 LEE43 L0190 LEE40 LEEA9 LEEA6
LF153 L0265 LEOEE L025F L0260 LE14F LE136 LO2EB LO2EE
LO2EF L491F LO2ED L0222 LE237 LF58A LF57E LF52B LF536
LF6BA LF680 LO36E LF69B LF695 LF6CB LF646 L0007 L0008
L92AF L7D76 L7D88 L7DDA L7E03 L6929 L6928 L7E01 LO2A1
L7E73 L7E90 L4009 L3039 L7E71 LCC18 LCC15 L7B79 L94B3
LC307 L927C L9285 L9282 LA581 LA586 LO1F2 LA5B7 L4E5A
L024C L4E5C LA5BC L4E5B LA5B2 L4E5D LA5C2 LDOAA LDO9D
L01D7 LDOCA L489D L489C LDOC7 LDOD5 L489A LDOE2 LO1DA
LD100 LO1DD LDICE LD139 LD141 LO06D LD150 LD160 LD1CD
L01D2 LCF70 LCFAF LCF80 LCF86 LCF83 LCFAB LAF5C LAF62
LB106 LB12A LB291 LB2DD LB375 LF42B LF2EB LB78C LBCED
LBDF3 LBD4D LBE8F LF842 L3FD4 L3FD6 L3FD8 LF7F4 L76DD
L78E4 L78F8 L7634 L862B L76E5 L4D8E L76FA L4D8D L0067
L450C L783B L48D0 LF116 L783D L77A5 L7907 L77E8 L7874
L78B3 L78CB L78D3 LEF5F LEF56 LEF62 LEFC9 LEF22 L4EE8
L0885 L9355 L4EA6 L9387 L935E L93D4 L9361 LB26F LB1B5
LB199 LO15B LB1A6 LB1B7 L015C LB1B2 L019B LB219 L756A
L756C L48F3 L48F4 LEF3A LEF40 LEF34 LCD8C LCD95 LCDA5
L5E8C LCE29 LF1DF LF1E6 L5D05 L5D06 L5154 L5153 LAEC7
LAECC LAEE3 L0063 LAFOA LD556 L5B2C LD567 LD564 L5D2D
LD81B LD82A LD852 LD98D LD99F LD9AF LD9B8 LD94C LD94F
LD94A LOO7A LD380 L406D LD37B L084C LD371 L4073 LD395
LD386 L0184 LC65E LC66D L6753 LC668 L6754 LC677 LC68F
L0126 LCG6A1 L4011 LC977 L4010 LC988 L0834 LCIC8 LCIC3
L4016 LC9BA L9992 L99A2 L99AC LI9FE3 LI9FEC L088D LAO7D
LAO6C LA075 L02C8 L02D2 LAOBF LA1AE L3FEQO L0847 L0849
LADF3 L0845 LADB2 L084B LAEOD LADE4 L5119 LAEOO L511A
L0846 LCEAA LCEB4 L9E2A L5066 L9E3A L0039 L9EB2 L9ESD
L9ECF LA46E L5B02 LA44A LO2CF L4FBE LO2CD L085D LA3F6
L4EB1 L4028 LD2A3 L0232 L4026 LD27E L4027 L402A LD285
LCBB2 LCBD9 LDA8D LDEEB LDFAC LDF9F L023F LDB7A LDB2D
LAE2A L4E2C L4AE2B L4E2E LDB77 L4E2F L4E2D LDB6D LE71A
LE72E LE715 LO17C LE7C3 LEDDO LF162 L0066 LE15D L494A
LE164 L0858 L4FB4 LE172 LE178 LE1F4 LE188 LE1FC LE250
LE241 LE24D LF59E L0368 LF530 LF562 LF54C LF55E LF559
LF6CO LF6BO LF6AB L92B7 L92C2 L92C9 L7E8A L0246 LO2A0
L7EA7 L7ECA L0065 L7EB5 L413B LO1E8 L7ED2 L7ECD LB3B5
L94BA L1803

*** \Warning: Branch Ref: 0x1803 is outside of Loaded Source File.
L94C4 LA4ADD L94DC L94D3 L997E LA613 L0283 L020D LASEO
L0225 LA616 LASF1 LA657 LAG55 L414D L0215 LA60E LD119
LO1DF LO1E1 LD172 LO84F LD193 LD191 LD19A LDO2A LCFF3
LCFDE LCFCD L4850 L4851 LCFE6 LCF94 LCF9F LD048 LB35E
LOOF3 L0076 L3000 LAF6F L3002 LAF9B LAF96 LAFB5 LO09A

Page 9 of 44

LB121 LB124 LE677 LEA7B LE4BA LB13B LB14E LB15D LOOB1
LO0B7 LOOBC LOOBE LOOCO LB2C9 LFOBD LB2DA LOOE7 LB2FF
LB318 L5D16 LF23F LB2FA LB384 L014C LB38C LB38F LF464
LF43D L0045 LF47D LO36A L51B1 LF493 L036C L012C LOOF7
L008B LO08C L012D LF36A LF39F LF35E LF339 LF343 LF35A
L0103 LF36C LO3A1 LF376 L0111 LB794 LBACB LBCF5 LBD44
L0119 LBDFC LO011B LBEO3 L674C LBE1D LO11F L6750 LBE1A
L6748 LBE2C LBE46 L0121 L6752 LBE43 LBE49 LBD59 LOOAD
LBD68 LBD71 LBD77 LBESE LBEA4 LBEA1l LC065 LF6D2 L4D8F
L7906 L763E L76A4 L7654 L7678 L864F L4967 L3FF2 L7851
L7865 L7870 LF121 LF125 L7921 L7919 L4E65 L7883 L789B
L78A3 L4EAB L4EA8 L93A0 L4EA9 L93A5 L93A7 L94A8 L937F
L50C4 L9377 L50BD L937C L93F2 L508E L93E4 L50B9 L93EF
L9410 L508F L9402 L50BA L940D L4E86 L9423 L02C2 L02CO
L9494 L943D L9442 L9447 LB213 LB1CD LOOF1 LB1D8 L0094
LB201 LB223 LOOAA L5B28 L0101 LB230 L5D1C LB23E L5D1B
LB24C L7583 LCDB2 L5E8D LCE39 LD57D LD589 LD959 LD967
LD390 L406E L406F L4070 LC6AB LC6B7 L4020 LC982 L401B
LCOD2 L401A LC95B L401C LC9EO L401D LCAOA L401E LCOF9
L401F L4014 L0836 L4F7A L99C6 L4F7B L4F7C L99C3 L0859
L4AF73 LAF79 L99D5 L99ED L4F7D L4F7F L99F2 L0O85B L9A20
L02D4 LA031 LAO0O L50C2 LAOB1 LAQ9C LO2D5 L50CD LA089
L0875 LAOC7 LA13F LA1B4 LA203 LAE21 LAE23 LAE31 LAE38
LAE42 LAE58 LCEC3 L46F4 LCECB LCED5 L9E33 L507E L9E46
L507F L9E4A LOECC LOEA8 L5096 LO9EAS LOEBE L9EDB L0883
L9EE9 L9F78 LA4BC LA4B6 L50B6 LOBSE L50B7 LA4B1 LA457
L50CC LA465 LA460 LA46B L4029 LCBC7 L50D2 LCBD6 LCBFO
LCBED LCC04 LCCO1 LDEF2 LEO18 L023B LDFCF LE033 LDFC3
LDFD1 LEO039 LDBAE L4E30 L0817 L4E35 LDBC4 L4E33 L4E34
L4E31 L4E32 LDBB3 LDBC7 LE727 LE733 LE7D1 LE7D9 LE1A6
L494F LE19D L494D L0293 LE1F9 LE1C2 LE1CF L491E LEIEF
L494E LE20C LE2D6 LE253 L0264 LF586 LF573 L92D9 L92DD
L92E1 L413A LB270 L7EE6 L7EEC LB3BE LB3C7 LAS3B LA4FO0
LA4DO L94ED L94EA L997C LA671 LA620 L4136 LAG6C L0234
L4144 LA66D LA6BB LD1BO LD1C4 LD1C2 L01D4 L47DA LDO038
LD047 LDO059 LD063 L01D5 LDOOE L01D3 LD020 LDO02B L4853
LCFF6 LCFA7 L5B43 LB374 LB370 LAFAB LAFA6 LAFC5 LAFCE
LAFD1 LE6B3 LEGAF LO15E LE6A3 LEAAD LEAA9 L0172 LEA9D
L5B35 LE4CB LB15F LB15B L5DOD LE576 LES5B7 LE38F LE96F
LB175 LE5F6 LEDD4 LE930 LE3CB LE4A4 LE3B1 LFOCA LO15D
LO16E LB316 LOOC6 LOOCD LB312 LOOCF LOOCB L5D18 L0102
LB33A LB344 L0814 L51B3 LF3BF LF3AC LF3E3 LF3EQ LF399
L031B LO31D LO31F L0321 L0323 L0325 LO3A3 LB7A2 LB7A8
LB7B9 LB7E8 LB7E0 LB7DO LBACE LB7F4 LB802 LB882 LBCFE
LBDOO L0143 LBD11 LBD29 LBD1B LBD21 L0129 LBE52 LO12A
LBE5B LBE6C L0123 LBE74 LBE7A LBD7A LBD86 LBD8D LCOB7
LBEC9 L011D LBEC6 LBECO LCO6A LBF79 LC083 L6921 L012B
LCO8E LCOA8 L76BD L76D3 L4956 L7669 L7675 L768A L76A0
LAEAA L4EA7 L93CO L93C5 L93C7 L94B2 L9323 L92F1 L94A7
L02C5 L02C3 L02C4 L9457 L945C L945E L5B22 LB221 L5B2A
LB205 L5B29 LB1FB L0199 LO19A L0197 L0198 LCDBC LCDCS
LCDD1 LCDD6 LCEO7 LCDFE LCE04 L0131 LD5C2 LD59A LD5B8
L5D26 L5D27 L5D25 LD5CO L5D24 L0081 LDSD6 L018D LE322
LD5F4 LDSEC LD602 L4017 LCA14 L4018 LCALD L0832 LCA2B
LAF7E L9AO5 L9AOO L9A31 L4EB2 LO85F L9A3C L9A8BB L4F84
L9A50 L4F85 L9A56 LOA7F LAO3A LA053 L50C1 L50CO L50C3
L50C5 LAOLF L9309 LAOALl L50C6 L4EB3 LAODS LAOEC L4EB4
LAOFD LA114 L4EB5 LA135 LA176 LA1AC L4EE6 LA15B LA170
LAEE7 LA1A9 L0899 LA1A4 L4FB5 L4FB6 LALEB LA1E3 L0876
LA22A L0877 LA226 L0878 LA21B L4F18 L4AF17 LA227 LA238
LA23B LA3SE LCEF5 LCFOB LCF15 LCF22 L0886 L508D L9ECB
L9EFE L5094 L9EFA L5095 L9F13 L9F18 L9F31 L0880 L4EAD
LDEFA LDF20 LDFO5 LDF1B LDF87 L0237 LE042 LE045 LDFDC
LDBFA L5B01 LDBE2 L081C L4E36 L0223 LE21B LE321 LE264
LE2BC LB27D L5B26 LB28A LB28D L5B23 L48B3 L7EFD LO29E
L48B1 L7F10 L48B2 L7F23 L91B6 L7F89 LAF17 L8695 L7F52
L7F7D L7F80 L860F LB3C8 LB3FB LB486 L0397 LA521 LA516
L0398 L94F4 L961A L4958 LAG7F LAG83 LA627 L4134 LAG36
L0233 LA6D4 L083D LAGED LAG6F4 LAFB2 L0097 LAFDF LAFED
L0095 LB0OO1 LBOOB LBO1C L5D23 L0O19C LB026 LBO2E LBO037
LB054 LO09B LB048 LO09D L0077 LBO64 LBOGE LBO7D LB096
LB099 LE6BO LEAAA LE5B6 LE5B2 LE5A5 LESF5 LES5F1 LESES
L5B34 L5B2B LE3A9 LE3AD LE9DB LE9D7 LE984 LE9SE L5B87
LE992 LE676 LE672 LE61E LE96E LE96A L016D LE954 LE96B
LE3ES L5B3A L5B31 LE3E9 LE4B5 L5B2F LE3C3 LE3C7 L0100
LF3F2 LF3FE LF401 LEFDO LBADB LBAE7 L6001 LB870 L6004
LB82B LB822 LBCOC LB8SE LBCEC LBB86 LBSBE LB8AG6 LF141
LB8D5 LB8D9 LBB8E8 LBSE9 LBD3C LBD3E LBD2F LBE7D LBE85
LBESB LBD99 LBDA1l LBDB7 LBDB4 LBDF2 LBDCC LBEE5 LBEFF
L691F LBEF6 LBFOB LBF84 LBF95 L691D LCOA3 L691E LCOAB
LCOB4 L50CA L92FE L9305 L946E L9473 L9478 LSE8F LCE20
LCE26 LE32A LE33B LD604 LD5FF L4015 LCA2F LCA32 L9A15
L4F80 L9ALF L4F81 L0857 LO9AAL L9AA4 L9333 LYAGB L0860
L9A66 L0861 L9A7B L4F87 L9A82 L4F86 L50C7 LA029 L50C8
L931F L50CB L50C9 L4EE4 LA18B LA1AO L4EES L0893 LALFA
LA249 LA250 L0866 LA367 L0867 L9F2E L9F48 L5097 L9F45
LOF60 L9F58 L507D LOF7B LDF24 LDF40 LDF44 L4E26 LDF5B
LDF84 LDF76 LDF98 LDF9B LDFE8 LEO1B LDC16 LDC10 LO2AB
L4E41 LDC24 LDC27 LDD14 L4E39 LDBEF LE224 L48C8 LE272
LE275 LE2DE L02BC L91BF L02BD L91D5 L91D8 L02B8 LO2BA
L920E L91FD L920A L9221 L7F95 L85D8 LAF3C LAF3F L5181
L5183 L4D8B L86C4 L866E L86BA L86DA L86F5 L86F2 L861B
L8720 LD3CA L862A L5D1D LB3F4 LSD1F L5D21 LB3FA LOOFA
L5D0C L01C9 LO1CA LOICD LO1CB LOICE L5DOE LB426 LB424
LB40D LOODS LB48D LB4DD LB4E8 LB4AS5 LB4AC LB4B6 L0181
LOOD4 LOODY LOODA LB4D3 L018B LB552 LOOD6 LB504 LB549
LA532 L4EAE L9524 L9532 L9551 L4EBO L086D L0879 LO87A
L0864 LO8GE L95DA L95D5 L95EB L962A L9654 L9632 LAG94
LA6BO LAGAD L4143 LAG44 L02B1 LS0DA LA721 LO2AF LO2BO
LA72F LA731 LA742 LA74D L0837 LA75B LA76B LA77A L0209
LA77D LA78E LA79F LA7AF L5D02 LBOB2 LBODO LBOD2 LSB1D

Page 10 of 44

LE5B3 LESF2 L5B85 LE9AF L5B45 L5B46 L5B47 L5B48 LE66A
LF411 LF414 LFO1D LEFD7 LOO8D LBB44 LBAFD LBB02 L0145
LBB41 LBC14 LBC1C LBCE8 LBBCA LBBFD LBBD6 LBBALl L5FC9
LO18C LF148 LF14E LF155 LB8F8 LB8FC LB8FD LBESE L674A
LBDED L674E LBDEA LBF1D L6920 LBF14 LBFAE L6924 LBFE6
LBFD2 LBFC6 LBFDA LO2CE L9488 L948D L948F LCA3F L4F82
L4F83 L0868 L3008 L933F L9340 L9A73 LA273 LAFBC LA291
LA269 LA2B1 L9F6D LDFF7 LE036 LDC35 LDDOD LDD8A LDD7E
LAEAF LDD41 LO24A L4E55 LDD3B LDD7B L4E3A LE2AA L48C2
LE293 L48C5 LE2CB LE2A4 LE31E L48CC L48C9 L400E LE308
L48CB L48CA L48CD L9218 L9205 L922E L9236 L9244 L7FFA
LO1ED L48B6 L7FAE L48B5 L48B7 L7FBB L7FFD L48B8 L7FD4
L7FE6 L7FF4 L8001 L85EB L85FA L8681 L8689 L8694 L86F6
L8627 LBAO1 L8745 L872E L8734 L873F L493F L8756 L8758
L876E L4940 L0290 L4942 LO28F L8789 LD3DD L0811 LD3D8
LD410 LB43D LB458 LO1DO LB472 LB47A LB524 LB51E LB52D
L95E3 L95E6 L0862 L0871 LO87D L4E87 L9614 L96OE L9611
L9920 L9684 L4F19 L4F1B L4F1A LAF1F L9674 L4F20 L4F21
LAF1C LAF1E L4F1D L4F22 L4F23 L9690 L9696 LA6B7 LA7AA
LO83F LA7B9 LO20F LA7D6 LO1E4 LA7EC LA7FD L021B LA810
LA81A LA830 L4141 L413D L021C LA849 LO21E LO22E L413F
LABA3 LA88D LA882 L5D13 L5D12 LE34C LBOFB LBOF8 L5B89
L5B8C LE9D8 LE673 LF42A LF421 LF024 L0144 LBB1D LBB23
LBB36 LBB33 LBC5A LBC33 L0139 L0138 LO13A L5FCF L5FDO
LO18E LO18F LBBE9 LBBF2 LBBFB LBCOB LBBB8 L5FCA L5FCB
L5FCC LBBDO LB905 LB917 LD96D LB927 LB929 LO13E LB942
LOOE2 LOOE9 L5FFF LB94B L5FFE LB988 L6923 LBF76 LBF35
LCOB8 L0110 LBF53 LBF4E L0185 L0125 LBF62 LBF6A LOOEB
LBF71 LOOED LC046 LBFF3 LCO1C LCOOA L6747 LC025 L6922
LBFEO L9A7E L4FBB LA287 LA2A3 LA29E LA2CF LA2C3 LA2BE
LE010 LO23A LDC3C LDCFD LDDC1 L4E57 LDDAO L4E58 LDDC6
L4E56 L4E59 LDDCB LDD59 L0248 L4E53 LDD56 LDD44 L48C6
LE2D9 L0801 L48C1 LE29F L48C4 L48DF L0261 L804F L0200
L8014 L801D L48B9 L8022 L48BB L803D L48BA L804A L8053
L4969 L8609 L860C L8708 L871F L8F97 L8ALB L8A50 L48C7
L8A35 L8A28 L8A32 LBA3B L8A52 L8A47 L0289 L0287 LBA7B
L8790 L4E4E LO28E L493D L87A2 L87BB L87AF L87B7 LO1F7
L87BD LD405 LO8OF L4132 LD402 LB543 LB53B LB553 LB5FE
LEBB1 L95EE L0889 L9938 L9963 L994F L50BE L96C5 L970F
L4FO5 L4F06 L96B4 LAF07 L96BC L4F09 L4F08 L96FF L0217
L413C L413E L0154 L0220 LA8F1 LO83C LA90C LA914 LA895
L4854 LE364 LE35F LE38E LBCCB LBC5C LBBC5 L5FCD L5FCE
LD97B LD982 LB954 LB976 L0141 LB9AB L5FE1 LB9AO LBA76
LCO54 LC10A L0188 LCOCC L0186 LCOF8 LC107 LC118 LCO5C
LCO5F LC02B LC034 LCO3F LCO017 LA2AC LA2EO LA2EB LA2CC
LDC39 L0242 LDC52 LDC4B LDC4F L4E42 L0243 L0244 LDEO1
L4AE66 LDDFB LO24F L4E69 LDDF8 L4E52 LDD86 L4E50 L0247
L4E51 LDD74 LDD87 L48C3 L0262 L8069 L8075 L808B L48CE
L8098 L80B8 L8712 L8FA6 LS8FAC L8A6B L48E2 L8A71 L48CF
LBAEE L8AFC L48D8 L8AE9 L48D4 L8ACY9 L8ABO L8AC1 L0294
L48D5 L8AD9 L8B05 L87CA L0298 L87D0 LB562 LB574 LB57C
LB586 LB588 LB591 LB597 LB59F LB5A1 LB5AB LB5AD LB5B3
LB5BF LE414 LB5CE LB5DB LB5E3 LBS5EB LB5F1 LB5FD L0114
LB64D LB631 LB64C LEC13 LEBD6 L088B L50BF L96E4 L96F8
L971A L9781 L415D LA91D LA977 LE37B LBCD8 LBC84 LBC6E
LBC7E LBC8E LBC89 LO13F LB987 L5FE2 LB9BA LB9BF LBI9CA
LB9C3 L5FE3 LB9F7 L013D LBA91 LBABE L601E LBA9F LBAAS
LBAAC LBABF LE424 L0112 LBAC8 LA2FF LA31F LA313 LA30D
LA30E L4E47 LDC8E L4E43 LAE44 L4E45 L4E46 LDC7A LAE4A
L4E4D LDDO3 LDC90 L4E6E LDE39 LDE1E L4E70 LDE41 LDE44
LDE30 LDD83 L80AO L4905 L80B5 L0254 L4D8A L025B L0257
L80OED L80FO0 L4D88 L8112 L0271 L0275 L8138 L813B L81D1
L817F L8156 L514B L8153 L084D L514C L514F L514D L8170
L514E L8179 L0075 L50CE L8FBB L02B6 L8FC7 L1809

** \Warning: Branch Ref: 0x1809 is outside of Loaded Source File.
L8FA8 L50D0 L901B L8FFA L8FDA L8FDD L02B7 L9016 L50D7
L8FF2 L02A9 L48D6 L8AF9 L8B3F L8B13 L4952 L48DA L48DB
L8B39 L082C L48DC L8B31 L48EO L8AD3 L48EE L8AE4 L8B02
LO29F L87D3 L87E9 L87E6 L885C LE420 LB665 LOOD7 L5FC5
LB67D LB691 LB69B LB74E LEC4E LEBE1l LEBE5 LEC15 L0132
LECAF LEC4B L4F12 L4F13 L96F0 L4F14 L4F16 L4F15 L973C
L9730 L9756 LO88F L97A5 L932A L97A2 L4F24 LAF25 L97AF
L97B3 L4159 L415A LA932 L415B LA939 LA9CC LBCAE LBCYA
LB99D LBA21 LBA7C LB9E5 L5FDD L5FE4 L013C LBAO3 LBAOS
LBA18 L0142 LBA2E LBA3D LBA5SD LBA4D L5FDE LBA54 LE430
LA332 LA32D LA319 LA340 LDCBB LDC9C L48ED L4E48 LDCAC
LDCB6 L4E6F LDE28 LDE3C LDE4E L4E73 LDE96 LDE6F L4E72
LDE6C L4E74 LDE9E LDE74 L81DB L818A L81E9 L8198 L81A0
L81A2 L81C5 L495C L028D L495B L81EC L8300 L9039 L9033
L9042 L90F3 L9004 L9007 L50D1 L90O1E L4909 L8B49 L4E71
L8B4D L4955 L8B6B L4957 L8B64 L48E1l L8AFF L87F1 L885F
L8859 L880OD L8873 L0282 L029D L89F4 L601D LB6AC LB6CE
LEC30 L0133 LEC7E L974C L0895 L0891 L977E L977B L9775
L9331 L9332 L97BC L0869 L97C6 L97CA L415C LA954 L415F
L46E8 LAA40 L46E9 LA9EC L0838 LBCC9 L5FDF L5FE5 L0140
LBA71 L5FEO LBA63 LA33B LA352 LA34D L0245 LDCC5 L4E4C
LDCE5 L4E4B LDCD3 LDEA1l L4E76 L4E78 LDE89 L4E79 LDEB6
LDEB3 L0856 L4E7A LDED7 LO87F L81FE L48BC L8218 L8207
L8213 L4938 L0268 L0267 L4939 L8315 L81DF L83D0 L905A
L9064 L9067 LO2AD L50D3 L9082 L9085 L02B3 L02B5 L90AF
L50D4 L90A2 L9OA5 L90DB L90C2 L50D8 L90C8 L9176 L9120
L9144 L9105 L916E L8B75 L8D50 L8818 L881C L8825 L8889
L0291 L8883 L8BALl L89FB L0292 LB6BA LOODB LOOD8 LB6FA
LB6E9 LB6F8 L0134 L0897 L97D3 L97E1 L97ED L4F76 LI7FA
LAF77 L9807 L4F78 L9819 L4F75 L9820 L9829 LA95D LA967
LAA69 L4151 LAASC L022B LAAA3 LO83A LAA18 LAA23 L083B
LAA35 LAA3D LA35B LDCEB LDCEO L4E49 L8222 L822F L8247
L48BD L821A L83EE L48D1 L48D2 L48D3 L83F4 LO06C L8425
L90E6 L9OFO L917A L90D5 L90D8 L919A L918D L912A L9148
L50DC L50DB L913B L50DD L9177 L50D9 L4917 L8B8D L4918
L0286 L8BIC LO26E L8D71 LO81A L8D68 L0818 L48EC L8DAE

Page 11 of 44

L8D96 L8DAO L8DA6 LBE1D L8ES56 L8834 L494B L8389B L494C
LO2A3 L88F6 L4943 L88C9 L88DB L0285 L88E6 L8893 LB6CL
LB6C7 LB701 LB70B L4F74 L9AA8 L9D03 L9D89 L9840 L9IB4E
L9855 LA973 LA97D LA980 LAAAG L414E L4150 LAA7B L414F
LAASD LAA90 LAAAD L1812

*** \Warning: Branch Ref: 0x1812 is outside of Loaded Source File.
LAAEO LAADD L4160 LAACD L4163 LAAD2 L8236 L48CO L081D
L8258 L8255 L8402 L4510 L840E L8416 L842E L8449 L844F
L8473 L847F L91B5 L91B2 L50CF L9197 L9153 L9161 L9164
LO2AA L9173 L4919 L0203 L0204 L0205 L8BCA L490D L8BD2
L8CDF L8E1F L8DCE L48EA L8DCA L8DD9 L8E04 L48EB L8E0O
L8DFE L8E1A L8E18 L8E5C L48F2 L8E75 L8E70 L48F0 L8E73
L4901 L4902 L4903 L4904 L8908 L891F L8932 L894C LO2A4
L8962 L89BO L493E L8970 L88F2 LB713 LB72A LB733 L0113
L9AB2 L9ABA L9AD2 L9ADD L9D13 L9D53 L9D95 LID9F L9863
L0870 L986A LA995 LA9A2 LA9A8 L0211 L4145 LAAF9 LAB47
LAB24 L0231 LAB17 L4164 L4161 L493A L8262 L8330 L450F
L8422 L847B L848E L84A0 L859F L8C34 L8BDD L490A L8BES8
L0299 L490F L8DOC L028C L8D15 L48E4 L8E34 L48E5 L48E6
L8E41 L48E7 L48E8 L48E9 L8ED2 L8E99 L8EA2 LB8ECC L48EF
L8E7B L89C5 L4944 L89BD L89CC L897B L897C L4EE9 LIAES
LAEEA L9B10 L9D1A L9D20 L9D26 L4FBF L9D3D L9D4B L9DSE
L9D72 L9D9D LODDF L9DB7 L9DC2 L9DC8 L9874 L9877 L9891
L988A L450A LA9CO L450B LA9BC LA9C3 LAB60 LAB59 LAB63
L46D5 L46D6 L46D7 L46D8 L82CA L8284 L82EQ0 L8341 L8349
L83CA L84DE L84AD L84D3 L85AE L029A L4913 L8CA4 L8C5A
L490E L4914 L490B L8C7C L8C88 L491B L8CI9D L8CA3 L4912
L8CCO L4915 L4916 L491A L8D1B L490C L8C09 L8C31 L8C17
L8D36 L8D49 L0399 L0263 L8EFD L48BE L48BF L8F00 L026C
L8EC9 L8EBB L48FF L48FD L89E9 L4908 L8998 L4907 L89AD
L8995 L9AFE L9B3B L9B2A L9B41 L9CE9 L4FCO L9D47 L4FC1
L9D56 L9D67 L9DBD L5030 L9DC5 L5031 L9DD5 L9DD8 L9899
L509F L98B5 L509E L98B8 L98C6 LAB91 L45CE LAB72 L45CF
LABA2 LAB7B L4E6D L4935 L82DA L4937 L8325 L828F L493B
L82B8 L493C L82AA L4933 LB2E3 L4934 L82C6 L4930 L82E8
L082B L8357 L8362 L492C L836B L492D L837B L8390 L839D
L839F L492F L83B4 L492E L84E9 L854C L84F2 L8507 L8518
L0281 L8535 L027F L027D L0280 L027C L8559 L84B7 L4922
L84DC L496A L84D9 L8555 L85C9 L85D2 L4963 L4965 L8CLE
L8CD6

** \Warning: Branch Ref: 0x1800 is outside of Loaded Source File.
L8F4B L0297 L8F1E L8F89 L0296 L8F2C L48E3 L8F3D L8F4E
L8F57 L4900 L48FE L89A3 L4906 L9B09 L9B50 L9B82 LIB70
L0873 L9D70 L98BE L98CO L98D6 L9913 LABB2 L414B LABD5
LABD2 LAB87 LAB89 L0269 L82FB L4931 L82F6 L4932 L831E
L4928 L8576 L492A L8599 L858C L4910 L8C3A L4911 L8C36
L491C L8CFO L8F82 L8F70 L48F1 L8F6B L8F7D L504B L504C
L9B7C L9CBD L9B8D L9BA1 L98FD L50A2 L98EE L98F2 L50A0
LABC9 L4149 LABF9 LABE9 LABF4 LO39A L8586 L8CFB L8C39
L8F7A L9CDC L9CCC L9CD3 L9CD9 L9B96 L9BB2 L9BBC L990B
L4147 L0213 LACOB LAC1D LAC1B LAC24 L180F

*** \Warning: Branch Ref: 0x180F is outside of Loaded Source File.
L0224 LAC3F LAC5D L3FE8 L3FE6 LACEC LACCB LACD7 LACEO
LACD1 LACB9 L4E67 LACC8 L8DOB L9CE7 L9B9F L9C31 L50B8
L9BF9 L9BDC L50BC L9BF6 LACFC LADSE L3FEC L3FE4 L4E68
LACCE L9C49 L9C3E L9C44 L9C5F L9COA L9C23 L9C1E L9C62
L9C56 L9C5C L9C2E L9C6D L9C94 LIC81 LIC8F L50BB LICBC

Pass 2 - Disassembling to Output File...
** \Warning: Branch Ref: 0x1800 is outside of Loaded Source File.
** \Warning: Branch Ref: 0x1809 is outside of Loaded Source File.
** Warning: Branch Ref: 0x1803 is outside of Loaded Source File.
** Warning: Branch Ref: 0x1812 is outside of Loaded Source File.
** \Warning: Branch Ref: 0x180F is outside of Loaded Source File.
** Warning: Branch Ref: 0x1815 is outside of Loaded Source File.
** \Warning: Branch Ref: 0x1806 is outside of Loaded Source File.
** Warning: Branch Ref: 0x180C is outside of Loaded Source File.

Disassembly Complete

Due to copyright issues, the source binary file and resulting disassembly file cainot be included in the
distribution of M6811DIS.

By examining this output, we can better ill ustrate the order of operation within the disassembler. First, we
seethat after initiali zing itself, the disassembler reads the Control File. From the Control File, the
disassembler sets the load addressto 0x400Q sets the input fil ename to “AV94BNBH.BIN", sets the output
filenameto “AV94BNBH.DIS’, sets 21 user-spedfied entry points and 16 user-spedfied labels, and
enables the outputting of addressinformation in the output file. Noticethat the indired vedors gedfiedin
the Control Fileisn't processed urtil | ater — thisis becaise the sourcefile has to be loaded before the
indireds can be resolved.

Page 12 of 44

After reading the Control File, the disasembler reads the M6811DI S.OP opcodes fil e — there ae 308
unique opcode definitions for the HC11. Then after reading the opcodes, it 1oads the sourcefile. Notice
that this particular fileis 0xCO0O0 kytesor 48K. Sinceit started at 0x400Q the loaded code mnsumes the
upper 48K of the HC11' s 64K program-space Typicdly you should never have afil e that occupiesthe
entire 64K addressspaceof the HC11. Thisisbecaise part of that spaceisredly RAM space ad HC11
Register Space RAM and Register space(and anything else that isn’t part of the program and program
data) should not be included, ssmply becaise the information in those aeasis not valid.

This version of the disassembler all ows for only one source binary to be loaded duringarunand
conseguently has only one singe load addressthat can be spedfied. If more than one file needsto be
loaded, they must be externally concaenated into asingle unit. Future versions of the disassembler will
allow for multi ple sourcefilesto be loaded, ead at their own urique starting address and will alow for file
formats other than binary to be used. In any case, overlapsin thefiles are not permitted.

After loading the sourcefil e, the disassembler can now resolve the indireds gedfied in the Control File. It
reads the aldress s$ored at eat spedfied indired location and adds the found addressto the internal entry
table. Note that this version of the disassembler assumesthat all i ndired values gedfied are indired
addresses of (or pointersto) code entry points— such as an interrupt table entry. Future versions of the
disassembler will also allow the spedfying of indired addresses for pointers that point to datainstead of
code.

Now that everything has been loaded, the disassembler will begin pass1 throughthe sourcethat it has
loaded into memory. During this passthe disassembler will tag al |oaded memory locations as being either
dataor code. And, ead timeit encounters anew label, the new label is added to the |abel table and
outputted to stdout. Thisiswhy the labels appea seamingly in random order.

Notice the warning messages like “*** Warning: Branch Ref; 0x1803is outside of Loaded SourceFile.”.
These indicate that a branch or jump instruction spedfied an addressthat was outside of the memory area
loaded from the sourcefile. Thisistypicd in applications that have more than one sourcefor the program
code. It can result from any of the following “system” reasons:

e The mdeis lit into multiple ROM chips

e The mdeis smply broken into multiple parts

* A semnd procesor with common dual-port memory space

e Dynamic code that isloaded into RAM either by this program or some other boastrap
* One of many other posshle “system” reasons

It can, however, from any of the following “user” reasons:

e Anincorred load addressfor the binary image was edfied
* Anincorred entry point was edfied

e Thebinary could be @rrupt or incorred

» One of many other passble “user” reasons

If you see erors of this nature, chedk your sourcefile. Make sureit isthe arred length and that you have
spedfied the load addresscorredly. Make sure that you have dl the pieces of the binary and that they are
concaenated and/or padded corredly.

In this example, we can ascertain that in this particular case, it is the result of a“hardware” reason. We
noticethat the 8 different “outside” addresses are spacal every 3 hytes apart. Peauliarly enough, the jump
instructionsin the HC11 happen to also be 3 byteslong. After double chedking our original ROM and after
further study of the device under test, we find that these “outside” addresses creae adynamic jump-table
and that these addresses appea in a secondary memory device— passbly EEPROM or a dual-port memory
interfadng this HC11 with a cprocessor. By reading the HC11 memory spacein-circuit, we can adually

Page 13 of 44

seethis dynamic jump table and how it is creaed. But, the knowledge, instruction, and methoddogy on
how to doin-circuit testingand ather more in-depth reverse engineaing techniques are outside the scope of
this document.

After the disaseembler has completely exhausted al entry point table values, the disassembler then starts
passtwo. Passtwo is smply an iteration throughthe entire loaded memory space whil e outputting the
disaseembly to the output file. After the iteration throughthe sourceis complete, the disassembly processis
finished. The resulting assembly file, when resssembled acwrding to the sedion Reassembling a
Disassembly, will result in abinary file that is guaranteed to be byte-for-byte identica to the original binary
sourcefile. This eliminates many of the headaches and hard work required by most disassemblers that
aren’t targeted for a spedfic esembler — on those disasemblers, it is often necessary to completely rework
the output fil e before it will even assemble, much lessassemble badk into the original binary. That is what
makes this disaseembler so appedingto the reverse-enginea, who often needsto disassemble aprogram,
add a change some functionality, and then ressemble and be &le to doso without reworking the entire
source by hand.

Page 14 of 44

Control Files

Control files are the means for telli ng the disassembler how to load, interpret, and dsassemble the desired
binary sourcefile(s). The reason thereisa Control File isthat the disassembler needs to know more than
just the name of the original file — so much more that it would be aumbersome to have to repeaedly speafy
these options on the command li ne when running the disassmbler, not to mention you'd run out of
command line spacé

A Control Fileis nothing more than a simple text fil e that you creae using your favorite text editor. This
text fileisalisting of commands with associated arguments for the disassembler. Each command must be
listed on a separate line and all numeric aguments must be entered as hexadedmal values with no hex-
denoting prefix or suffix. That is, you donot put a‘0x’ or ‘$' or any other symbad before or after to
indicae ahexadedmal value. Future versions of the disassembler will all ow for other number bases, but on
thisversion all values are ssaumed to bein hexadedmal.

Comments can be placed in the cmmand file by usinga semicolon (*;’). Any text on aline following the
“;> will beignored by the disassembler. Blank lines are dso ignored.

The order of the cmmandsin the Control Fil e does not matter on this version, as none of the mmmands
have any interdependencies. However, on future versions, there may be some command orderings that will
matter. For example, on future versions where the number-base can change, it would be necessary to
spedfy anew default base before using that base. But on this version, order makes no difference

The commands are not case sensitive, as everythingisinternally converted to uppercase.

Onthisversion, all commands must be placed into one single Control File. Future versionswill allow for
combining of Control Files and more extensive Control Fil e parsing options.

A bare minimum Control File can consist of only 2 lines—an “input” statement and an “output” statement,
asyou'll seefrom analyzing the example axd command descriptions below. The default |oad addressfor
the sourcebinary file is 0x0000if it isn't explicitly spedfied. And, if no “entry” or “indired” statements
are spedfied to give entry points, then the file load addresswill be used as an entry point. However, you
should note that the load addressis NOT assumed to be an entry paint if any other entry paoint (either dired
or indired) isused. If theload addressisa arred entry point and you have other entry points and/or
indireds gedfied, you must include an additional “entry” command to add the load addressto the li st of
entry paints.

All of the Control File mommandsfall into one of three céegories: 1) Switch Commands, 2) Vaue
Commands, and 3) List Entry Commands. Each Switch Command switches ayes/no ogion in the
disaseembler. Thisversion supparts the foll owing Switch Commands: ASCII, ADDRESSES, and
OPCODES. The Vaue Commands all ow you to spedfy avalue for adisassembler option. Thisversion
supparts the following Value Commands. INPUT, OUTPUT, and LOAD. The List Entry Commands all ow
you to add an entry to one of the disassembler’sinternal lists, such asthe entry point table, the label table,
or theindiredstable. Thisversion suppartsthe following List Entry Commands: LABEL, INDIRECT, and
ENTRY. Each of the supparted commands are described in detail i n the foll owing sedions of this
document.

Page 15 of 44

Example Control File

Below isthe Control File that was used in an adual disasembly/reverse-engineeing effort. This Control
File isthe one that was used to crede the previously discussed screen output in the Step-by-Step Walk-
Through sedion:

M6811DIS Control File for:

'94 Astro Van computer code: BNBH

input AV94BNBH.BIN
output AV94BNBH.DIS

load 4000

addresses
ascii

label ffd6 scivect
label ffd8 spivect
label ffda paievect
label ffdc paovect
label ffde tovfvect
label ffeQ ti4o5vect
label ffe2 to4vect
label ffe4 to3vect
label ffe6 to2vect
label ffe8 tolvect
label ffea ti3vect
label ffec ti2vect
label ffee tilvect
label fffO rtivect
label fff2 irqvect
label fff4 xirqvect
label fff6 swivect
label fff8 ilopvect
label fffa copvect
label fffc cmonvect
label fffe rstvect

indirect ffd6 scirtn
indirect ffd8 spirtn
indirect ffda paiertn
indirect ffdc paortn
indirect ffde tovfrtn
indirect ffe0 ti4o5rtn
indirect ffe2 to4rtn
indirect ffe4 to3rtn
indirect ffe6 to2rtn
indirect ffe8 tolrtn
indirect ffea ti3rtn
indirect ffec ti2rtn
indirect ffee tilrtn
indirect fffO rtirtn
indirect fff2 irgrtn
indirect fff4 xirqrtn
indirect fff6 swirtn
indirect fff8 iloprtn
indirect fffa coprtn
indirect fffc cmonrtn
indirect fffe reset

entry 7C0B
entry 7C12
entry 7C1C
entry 7C22
entry 7C35
entry 7C6B
entry 7C7C
entry 7C83
entry 7C9C
entry 7CAO
entry 7CAA
entry 7CAE
entry 7CBE
entry 7CC2
entry 7CCC
entry 7CDD

Thisisthe same example Control File that is provided in soft form with the distribution of this disasembler
and was used to dsasemble the ade from a 1994 43L CPI VortecAstro Van vehicle computer, which
happens to use aMotorola 68HC11 variant. Let’'s analyzethis Control File pieceby piece

First off, we define the input and output files we will be using. | typicdly use the mnvention of .bin for all

source binary format filesand .dis for all disassembler output files. After | have a tianceto go throughthe
disaseembled output, clean it up, and comment it, I'll rename the “clean” version with a.asm extension.

Page 16 of 44

Y ou may, however, adopt a different extension standard, as the disassembler doesn’t care what you name
the input and output fil es as long as they are properly spedfied in the Control File. It will complain if you
don't spedfy these.

We then tell the disassmbler that the load addressfor thisfile is0x400Q Even thoughthe ROM isa27512
or 64K byte ROM, only the upper 48K isused —with the lower 16K being all OxFF bytes. This makes
sense onsidering the RAM and CPU Registers exists in the lower memory. So after reading the entire 64K
ROM, the binary image was trimmed down to 48 by using a hex editor (a decent hex editor for Windows
iswritten by BreaPoint Software and can be found at www.bpsoft.com). Asmentioned ealier, it isnot
goodto include parts in the binary sourceimage that isn’'t acually part of the ade or data being
disassembled —in this case the OXFF padding.

In our output, we'd like for the disassembler to include the atual memory addressfor ead instruction in
the disassembly output, so we include the “addresses’ switch to enable that. And we'd also like for it to
attempt to decode any areas that doesn’t appea to be cwde & posshly being ASCII data and to output them
as dringsif they exist, so we'll include the “ascii” switch.

Sincewe know that thisisan HC11 processor and that the ROM exists in the upper memory, it only makes
sense that the image includes the interrupt vedor table. So we'll include alist of the basic HC11 interrupt
vedors. (Becaise of their complexity and variance from one HC11 family to another, the detail sand
spedfics of these interrupts are not included in this document, but are available in the &orementioned HC11
referencemanuals.) Wefirst define aname for ead of the vedor locaions themselves. Thisisoptional,
but all ows us, when looking at a disassembly output, to easily tell which vedor iswhich. Wethen list ea
vedor as being an indirea —which will cause the disassembler to add the addresslocated at the vedor
addressto the list of entry paoints. It also allows usto spedfy alabel name for the routine that is being
indiredly referenced. So, we'll give them names like “reset” and “swirtn”, things that will be meaningful
when we later examine the disassembly.

If this were the first time we' ve encountered this binary, that is about all that we can enter into the Control
File, aswe won't yet know of any additional entry points. So we run the disassembler with a Control File
that doesn’t have the “entry” commands listed. In aquick look over the resulting output, we'll find several
jump tables and code that get cdled indiredly during exeaution. Typicdly, these ae done by loading one
of the index registers with alookup table addressand danga“jsr” relative to the index register value. So,
look for “Undetermined Branch Address’ commentsin the disassembler output. Anytime the disassembler
encounters ajump it cannot trace it will comment the instruction as such. Thiswill typicdly be a ¢ueto
you that you reed to look for a branch table or similar, add “entry” values or additional “indired” valuesto
the Control File, and runthe disassembler again. That iswhat was done here and is where the aldresses
came from that you seein the “entry” commands. Most of these were adually indireds, instead of plain
entries, but | chose to use the “entry” command so you can see alditional control file mommands in-use.

The only Control File cmmand supparted in this version of the disassembler that isn't ill ustrated in this
exampleisthe “opcodes’ switch. It worksin the same way that “addresses’ and “ascii” does, except that it
causes the disassembler to autput the adual opcode bytes for ead disassembled instruction along with the
normal disasembly.

Page 17 of 44

Control File Commands
Switch Commands

ADDRESSES

Format: addresses

The“addresses’ switch instructs the disassembler to output the addressof the start of ead instruction in
front of the adual disassembled instruction in the output line. Hereis an output example with “addresses”
turned on:

EBAC LEBAC: clra

EBAD LEBAD: st aa L0177

EBBO LEBBO: rts

EBB1 LEBB1: brset *L003B,#0x04,LEC13
EBB5 ldx #0x5B00

EBBS8 brclr 0x08,x,#0x04,LEC13
EBBC brset *L0090,#0x40,LEBD6
EBCO bset *L0090,#0x40

EBC3 brelr *LOO01E,#0x04,LEC13
EBC7 Idab *L0031

EBC9 cmpb 0xB8,x

EBCB bce LEC13

Having a copy of the output with the aldresses on ead lineis very useful when hurting down references,
finding data labels, etc. However, having the aldresses present prevents the mde from diredly assembling.
Sincenot all editors allow you to do Bock deletes and easily delete the addresses, the switch is provided so
that you can enable/disable aldressgeneration. Thisway, you can turn them off and creae afile that is
compatible with dired re-assembly, or turn them on and creae afile that is easier to sort throughwhen
dedphering and commenting the resulting disassembled code.

The default mode if “addresss’ is not spedfied is ADDRESSES OFF.

If “addresses’ was not spedfied in the control file, the dove amde example would have gpeaed as
follows:

LEBAC: clra

LEBAD: staa L0177

LEBBO: s

LEBB1: brset *L003B,#0x04,LEC13
ldx #0x5B00
brclr 0x08,x,#0x04,LEC13
brset *L0090,#0x40,LEBD6
bset *L0090,#0x40
brelr *LO01E,#0x04,LEC13
Idab *L0031
cmpb 0xB8,x
bee LEC13

Page 18 of 44

ASCI|
Format: ascii

The“ascii” switch causes the disassembler to look at the data aeas when creding the output file and to try
and group adjacent bytesif they are ASCII printable charaders. Here isan output example with “ascii”

turned on:
; 432A: 59,55,52 4E 4E,4D,4C,4B
; 4332: 47,44,40,3B,52,63,66,61
; 433A: 5F,5B,56,52,4F,4E ,4E,4D
; 4342: 4B,47,44,42,3E,52,63,66

; 434A: 5F,55,52,4F 4E,4D,4C,4B
.ascii "YURNNMLKGD@;Rcfa_[VRONNMKGDB>Rcf_URONMLK'

Note that the disassembler, in addition to outputting the ASCII equivalent of the bytes, will also ocutput the
byte values themselves. Thisis useful in casethe dataredly isn't text, asin the cae dove. And,
sometimes there will be red text procealed or foll owed by datathat just happensto be in the printable
ASCII range. Depending on whether your fil e has more printable text or not will determineif you will want
to runthe disassembler with “ascii” on or off. If it hasalot of printable text, runnngwith it on will save a
lot of typingin your “cleaned-up” version of the disassembly. But if thereisn’t very much printable text,
running with it off will kegp you from having to convert those misinterpreted areas bad to bytes. | suggest
first runnngwith it on and seewhat ASCII stringsit produces and then dedde from there.

The default mode if “ascii” is not spedfied is ASCII OFF.

If “ascii” had not been spedfied on the above, the output would have gppeaed as foll ows:

.byte 0x59,0x55,0x52,0x4E,0x4E,0x4D,0x4C,0x4B
.byte 0x47,0x44,0x40,0x3B,0x52,0x63,0x66,0x6 1
.byte 0x5F,0x5B,0x56,0x52,0x4F,0x4E,0x4E,0x4D
.byte 0x4B,0x47,0x44,0x42,0x3E,0x52,0x63,0x66
byte 0x5F,0x55,0x52,0x4F,0x4E,0x4D,0x4C,0x4B

Note that regardlessof whether “ascii” is on or off, the output file will still reaseemble badk into the original
binary. Thisisbecaisethe “.ascii” assembler diredive and the “.byte” assembler diredive will producethe
same value bytesin the aseembly process and the extra“red byte values’ are outputted as comments for
the assmbler (as can be seen above).

Page 19 of 44

OPCODES
Format: opcodes

The “opcodes’ switch causes the disasembler to output the adual byte values for any instruction that it
disaseembles, as a comment on aline before the disassembled instruction. Hereis an example of code that
has been disassembled with “opcodes’ turned on. Note that thisis the same mde a was used for the
“addreses’ example aove:

; EBAC: 4F

LEBAC: clra

; EBAD: B7,01,77

LEBAD: staa L0177

; EBBO: 39

LEBBO: Its

; EBB1: 12,3B,04,5E

LEBB1: brset

; EBB5: CE,5B,00
ldx #0x5B00

; EBB8: 1F,08,04,57

*L003B,#0x04,LEC13

brclr

; EBBC: 12,90,40,16
brset

; EBCO: 14,90,40
bset

; EBC3: 13,1E,04,4C
brelr

; EBC7: D6,31
Id

al

; EBC9: E1,B8
cmpb

; EBCB: 24,46

bce

0x08,x,#0x04,LEC13
*L0090,#0x40,LEBD6
*L0090,#0x40
*LO01E,#0x04,LEC13
*L0031

0xB8,x

LEC13

Thisisuseful if you just want to seewhat the bytes are to help with your understanding of the adual HC11
macdine @de, or if you are tradking a sedion that you think might be misinterpreted as code that redly
should bedata. Thisway you can seeit in both forms.

The default mode if “opcodes’ is not spedfied is OPCODES OFF.

In most cases, sincethe disassembler does a good job with separating code and data, you will probably want
to leave this option turned off (whichiswhy I didn’t include it in the sample Control File) asit will only
make the output file bigger. Note that this option will not affed the reassembly of the file since al of the
extraoutput is done & comments and will be ignored by the assembler. Thisoption is here mainly for
debuggd ng purposes when the disassembler was written, but was |eft as an option to be used as aleaning
toal for newcomersto the HC11 processor and to be used in the rare cae of data being misinterpreted as
code.

To seewhat the output would look like with the “opcodes’ switch left off, please refer to the “addreses’
command.

Page 20 of 44

Value Commands

INPUT

Format: input <fil ename>

The “input” command all ows you to spedfy the name of the sourcefile for the disasembler to read. If a
path is not spedfied, the file must reside in the aurrent diredory. An extension need not be given, and if
none is given, none will be gpended. The file must be in binary format, as that isthe only format that is
supparted by this version of the disassembler — future versions will suppart additional formats and will have
additi onal arguments and options for this command.

Thefile will be loaded at the off set addressoptionally spedfied by the “load” command. If no “load”
command is pedfied, then the addressOx0000will be used.

The sourcefile must fit within the memory bounds of the HC11 procesor. That is, it cannot be bigger than
64K if loaded at 0x000Q If loaded higher than 0x000Q the size must also refled this. For example, if the
load addressis edfied as 0x400Q then the file can be no bigger than 48K. Note that the fil e need not fill
the entire memory. If you are disassemblinga 1K chunkof code that is originated at 0x0800(for example),
then the binary neadsto only contain the 1K chunkand aload addressof 0x0800should be spedfied.

In redity, you should not include bytes that aren’t either code or data for the source you are disasembling.
For example, RAM areas in the procesor address paceshould not be included. Typicdly, if these
locdions have @rresponding ROM addresses, they will be fill ed with OxFF or 0x00 (depending on the
source), which you should omit. Y ou should aso not include procesor control registers either. 'Y ou may,
however, wish to define labels for the cntrol registers or even labelsfor RAM variables. The disassembler
will properly tag these in the disassembly and setup equates for you. But, sincethese aein “volatile”
memory, the adual bytes $ould not be included diredly in the binary image — unlessof course you are

using the disassembler to dsasemble a &wunkof code that is transferred to the HC11 and runfrom RAM.

With this version of the disassembler, one and only one sourcefile can be spedfied. Any additional “input”
commands override previous “input” commands and only the last spedfied file will be loaded.

Fail ure to spedfy the sourceinput file will cause the disaseembler to halt with an error.

Page 21 of 44

LOAD
Format: load <addr>

The“load” command lets you spedfy the relative load off set addressof where the source binary file will be
loaded. Sincebinary fil es, by definition, contain no address $ructure, this command is needed to spedfy
the asolute addressof wherein HC11 memory the file should be loaded. A file caanot be loaded autside
of the 64K boundary of the HC11.

The <addr> argument is assumed to be in hex, and should not containa‘0x’ or ‘$’ or anything else before it
or an‘h’ or anything else dter it. Anexample, to load afile & 0x400Q would be:

load 4000
Future versions will allow for other bases.
If no “load” command is pedfied, 0x0000is used.

Note that thisis arelative off set for any addresses edfied in the sourcefile’saddress $ructure. A binary
file (which is the only format supparted by this version) has no address s$ructure, therefore, the load address
will become the @solute aldressfor the file. However, in future versions of the disassembler, when other
filetypes are available, sincethisisarelative load df set, if the fil e type of the input file does pedfy
address sructure, thiswill offset the addressesin thefile. For example, an Intel Hex file format spedfies
addresses for ead byte or group of bytesin thefile. If the hex file spedfied 0x0080as the starting address
and the load address pedfied by the “load” command was 0x100Q then the file will be loaded at 0x108Q
But that will bein future versions.

Page 22 of 44

OUTPUT
Format: output <filename>

The “output” command all ows you to spedfy the name of the output text fil e for the disassembler to write.
If apath is not spedfied, the file will be placed inthe aurrent diredory. An extension need not be given,
and if noneis given, none will be gpended.

The entire portion of HC11 memory that is“loaded” (that is has a corresponding byte in the input source
file) will be disassembled and written to the output file. The output file can then be viewed, edited, and/or
printed by any favorite text editor. This output file can be re-assembled if need be — seeReassembling a
Disassembly in this document.

Warning: If the spedfied output file exists, the disassembler will overwrite it with the new disassembly
without prompting you for confirmation. Any edits or changes you made by hand to the file will be lost.
Therefore, | suggest that after you' ve finished running the disassembler, and before you start doing any
manual editing or changesto the file, you renamethe file. That way, if for some reason you need to re-run
the disasembler, or even acddentally re-runit, you won't inadvertently overwrite the previously edited fil e.
Similarly, be sure to not acddentally spedfy the name of an existing fil e that you want to keep. You have
been warned.

| typicdly use an extension of “.dis” for the disassembler output file. | then renameit to have a“.asm”
extension before alitingit. The“.asm” file then will beaome my cleaned up, commented version of the
disaseembled code. That way, if | nead to re-runthe disasembler to, perhaps, disassmble some missed
portion of the ade from the previous attempt (such as an indired branch table), | can do so and then just
cut and paste @ needed from the new “.dis’ file into the “.asm” fil e without losing my edits. Y ou may,
however, have adiff erent system that you prefer. Future versionswill allow for saving comments and edits
without losing them when re-running the disassmbler.

Fail ure to spedfy the target output file will cause the disassembler to halt with an error.

Page 23 of 44

List Entry Commands

ENTRY

Format: entry <addr>

The cde-seeking portion of the disassembler works by creaing alist of entry points and then scanning the
code starting with ead entry point. If abranch or jump is encountered, the aldressfor it, if itisa
resolvable aldressthat isn’t alrealy in the entry point list, is added to the entry point list. When a
terminating instruction has been readed —such as an urconditional branch or return — then scanning with
that code portion ends and the next entry in the entry paint list isused. This continues until all entry points
are exhausted.

The “entry” command all ows you to spedfy hard entry paints within the source. Typicdly, most of the
entry pointsin the source can be spedfied with indireds (seethe “indired” command). But occasionally
you'll runinto a portion of code that for some reason has no indired vedor and requires a hard entry point.
Thisiswhere the “entry” command comesinto play. However, | suggest that if you can represent the entry
with anindired that you do so, as the number of hard entries that can be spedfied in the cntrol fileisfairly
limited —seethe sedion Limitationsin This Version in this document. Since most entries can be done with
indireds (as most are jump tables) then in most cases this limitation will not kegp you from disassembling
something that you need to —I’ve disassembled some very complex things with hurdreds of undetermined
jumps and indired entries and have never had problems with running out of entry points (however, | have
runout of labels— seethe “label” command — tut not entry points). If you do runout of hard entry
addresses, the disassembler will warn you. Future versionswon’t be bound by this limitation.

With resped to the li mitations described above, the sample Control File is smewhat of a bad example.
Most of the “entry” commands in that file should have been entered as “indired” sincethey were from jump
tables. However, in the example | was trying to ill ustrate the functionality diff erences between “entry” and
“indired”. And even then with a 48K sourcefile (not much lessthan the 64K size-limit of the procesr), |
was able to enter them all without runring into the limitation.

The <addr> argument is assumed to be in hex, and should not containa‘0x’ or ‘$' or anything else before it
or an‘h’ or anything else dter it. Anexample, to spedfy a amde entry point at 0x7C12, would be:

entry 7¢12
Future versions will alow for other bases.

Between the hard “entry” commands and the “indired” commandsin the control file, at least one entry
point into the source must be acertained in order for the disassembler to produce any code output. If no
“entry” commands exist and no “indired” commands exist, then the fil €' sload addresswill be asumed to
be a ode entry point and automaticdly added to the list. However, if any entry point is gedfied (either
froman “entry” or from an “indired”) then the sourcefil e load addressis NOT added to the list of entry
points.

Page 24 of 44

INDIRECT
Format: indired <addr> <label>

Most all jump tables and vedor tables on any processor are done by usingindired addressng. Anindirec
addressis amemory location that contains a memory addressto ather locaion. These “indired addreses’
can be data or code, but in most cases are wde pointers. A prime example of an indired addresson the
HC11 is OXFFFE, which isthe reset vedor for the processor. Immediately after power-on, the HC11 reads
the 2 bytes garting at OXFFFE and uses those 2-bytes as the aldressfor starting the exeaution of the HC11
startup code.

The <addr> argument is assumed to be in hex, and should not contain a‘0x’ or ‘$’ or anything else before it
or an‘h’ or anything else dter it. The <label> argument spedfies the text that you want to use for the label.
The label must follow typicd variable naming conventions — that is, it should only contain a phanumeric
charaders and underscore (* ') and must start with a non-numeric first charader. An example, to spedfy
the reset vedor locaed at OxFFFE, would be

indirect fffe reset

Future versions will allow for other bases.

Thisexampleisill ustrated as foll ows:

RESET: ...

... reset program code ...

RSTVEC: .word RESET <-- this is at FFFE and specs the vector data

This allows us to spedfy the aldressfor the indired without having to spedficdly look it up and resolve it
by hand. The disassembler will | ook at addressOxFFFE and add the 2-byte value it finds there to the entry
point table. And, it will also add the label spedfied, whichis“RESET” inthe dove example, to the label
table with the indireded address Note that the label is assgned to the resolved addressand not to the
vedor itself! If you want to assgnalabel to theindired vedor itself, you should also use the “label”
command to add the label for the vedor —thisisill ustrated in the example Control File. That iswhere the
“RSTVEC” comesfromin the @oveill ustration.

Onthisversion, labels are limited to six (6) charaders and thereis also a limit to the number of indirea
vedorsthat you can spedfy — seethe sedion Limitationsin This Version in this document. However, the
number of allowable indiredsis sufficiently high enoughthat most all disassembly applications will have
more than enough This charader limit iswhy the label for the vedor appeasas“RSTVEC” in the &ove
example rather than as the spedfied “RSTVECT”. Future versions of the disassembler will get rid of the
charader limit and the number of entries limit.

Additionally, this version assumesthat all i ndireds are Code-Indireds, or indired vedorsto program code,
but it is also pessble for source programs to have Data-Indireds, or indired vedorsto data, aswell. Future
versions will allow you to spedfy both Data-Indireds and Code-Indireds.

Code-Indired entries are another way of spedfying entry pointsinto the source. Between the hard “entry”
commands and the “indired” commandsin the cntrol file, at least one entry point into the source must be
ascertained in order for the disassembler to produce aly code output. If no “entry” commands exist and no
“indired” commands exist, then the file' s load addresswill be assumed to be a @de entry point and
automaticdly added to the list. However, if any entry point is gedfied (either from an “entry” or from an
“indired”) then the sourcefile load addressis NOT added to the list of entry paints.

Page 25 of 44

LABEL
Format: label <addr> <label>

The“label” command lets you assgn a meaningful name to an address If alabel is needed for a particular
memory addressduring the disassembly and you have not assgned a name to that address the disasembler
will creae oneinthe form of “Lxxxx” where “xxxx” is the hexadedmal addressof the memory location.

The <addr> argument is assumed to be in hex, and should not containa‘0x’ or ‘$’ or anything else before it
or an‘h’ or anything else dter it. The <label> argument spedfies the text that you want to use for the label.
The label must follow typicd variable naming conventions — that is, it should only contain a phanumeric
charaders and underscore (* ') and must start with a non-numeric first charader. An example, to spedfy a
label for the reset vedor located at OXFFFE, would be:

label fffe rstvect
Future versions will allow for other bases.

This all ows us, when looking at a disassembly output, to easily know what is what from the meaningful
names. Instead of sedang either nothing or an Lxxxx name, we have aname that when we seeit in the mde,
we will recognizeit asto what it isreferring to.

Onthisversion, labels are limited to six (6) charaders and thereis also alimit to the number of labels that
you can spedfy — seethe sedion Limitationsin This Version in this document. However, the number of
allowable labelsis aufficiently high enoughthat most disassembly appli cations will have more than enough
However, I’ ve runinto a few cases where there just wasn’t enoughlabel space Future versions of the
disaseembler will get rid of the charader limit and the number of entrieslimit. The dharader limit will
cause the label in the ebove example to appea as“RSTVEC” rather than as the spedfied “RSTVECT”.
But, you can go ahead and spedfy the full name in preparation for the newer versions, aslong asthe first 6
charaders are unique between labels.

If you attempt to add alabel that is already in the label table, the aldition will beignored —keeingits
original definition.

Page 26 of 44

Error and Warning Messages

The following Error and Warning messages can be reported during the exeaution of this version of the
disassmbler:

Error Messages

*** Error: Opening Opcodes Fil e: <fil ename>
Thisindicaes that the disassembler had trouble ether locating or opening the Opcodes File —
which iscdled “M6811DIS.OP” for this disassmbler. Chedk to make sure that it isin the arrent
diredory. While the disassembler can be run anywhere from the system path, the Opcodes File
must reside in the aurrent diredory at run-time.

*** Error: Opening Control File: <fil ename>
Thisindicaes that the disassembler had trouble ather locating or opening the spedfied Control
File. Chedk to make sure that thefile existsand is accessble to the disassembler and that you
typed the name and/or path corredly on the command line.

*** Error: Input and Output files MUST be spedfied in Control File.
Y ou must spedfy bath the Input File (or Source File) and Output Fil e somewhere within the
Control File.

*** Error: Opening Source File: <fil ename>
Thisindicaes that the disassembler had trouble ather locating or opening the Source Fil e spedfied
inthe Control File. Ched to make surethe file exists and is accessble to the disassmbler and
that you typed the name and/or path corredly in the Control File, and that you have read-access
rightsto thefile.

*** Error: Opening Output Fil e: <fil ename>
Thisindicaes that the disassembler had trouble opening the Output Fil e spedfied in the Control
File. Chedk to make sure that you typed the name and/or path corredly in the Control File and that
the target diredory exists and has aufficient freespace ad that you have write-accessrights to that
direcory.

*** Error: Writing Output File: <fil ename>
Thisindicaes that the disassembler had trouble whil e writing a line to the Output File. Chedk to
make sure you haven't run out of disk space ad that the disk is <ill properly mounted and
accessbleor if it isvianetwork that the network isn’t down.

Not EnoughMemory
During the initi ali zation processthe DOS memory limit was excealed and the program isn’t able
torun. Chedk to make sure that you are loading DOS in high memory and that no unrecessary
TSR (Terminate-and-Stay-Resident) programs sich as mouse drivers, drive mappers, €tc, are
loaded.

Page 27 of 44

Warning Messages

*** \Warning: Branch Buffer Full
Thisindicaes that the internal table that stores reference aldressesto all branchesisfull. Branch
addresses are alded during the amde-seeking passof the disassembler asjumps and branches are
encountered. When the limit has been readed, the disassembler will continue to function,
however, sedions of code that should be disassembled as code may come out as data becaise the
disaseembler was unable to add the necessary entries to the branch table. Seethe sedion
Limitationsin This Version in this document.

** Warning: Branch Ref: <addr> is outside of Loaded SourceFile
Thisindicaes that the branch that was added to the branch table, during the amde-seeking portion
of the disaseembler, referenced an address(indicated by <addr> above) that was outside of the aea
loaded from the sourcefile. This can occur normally when there ae other memory sources, such
as dynamic ram routines, etc, that may not have been in the ROM image that was read and feed
into the disasseembler. Therefore, thiswarning could be of littl e mnsequence However, it can
also indicae that either the sourcefile was not of the right sizeor that the load off set spedfied in
the Control File was incorred and caused the Source Fil e to be loaded at incorred memory
locdions. So chedk the source and make sure the warning makes sense.

** \Warning: Duplicae Label Definition
Thiswarningis displayed anytime alabel that has already been defined in the Control Fileis
redefined again within the Control File, based on address With this version of the disassmbler,
only one label can be defined per addressand any attempt to label an addresswith more than one
label or name produces this warning and the extralabel isignored. Y ou can, however, use the
same name for more than one aldress Why you would want to, | don’t know, asit will probably
cause ay assembler that you later try to reassseemble with to croak, not to mention confusing
yourself. The disassembler doesn’t chedk for ambiguous names, cause it redly doesn't care what
you cdl eat address

** Warning: Entry Point: <addr> is outside of Loaded SourceFile
Thiswarningis basicaly synonymous with Branch Ref outside of Loaded SourceFile. The
differenceisthat this appliesto the entry points gedfied in the Control File, where & branch
addresses are from branches found by the disasssmbler. However, the same guidelines apply to
this warning as does the Branch Ref warning— so see“*** Warning: Branch Ref <addr> is outside
of Loaded SourceFile” for more information. Also, chedk to make sure that you have typed the
entry point corredly in the Control File.

*** Warning: Indirea Buffer Full
Thiswarningindicaes that the internal li st of indired code vedorsisfull. Sincethisversion of the
disaseembler doesn’'t know how to add any indireds on its own, other than the ones you spedfy in
the Control File, this means that you’ ve entered more indireds in the Control Fil e than memory
allowsfor. Seethe sedion Limitationsin This Version in thisdocument. Oncethe tableisfull, the
extra entries are ignored, meaning that some of the code aeamay be incorredly outputted as data.

*** Warning: Label Buffer Full
Thiswarningindicaes that the internal li st that assciates a string label with an addressisfull.
This can either be aresult from “label” commandsin the Control File, or from labels generated
during the mde-seeking passof disassembly and/or during indired resolution. Seethe sedion
Limitationsin This Version in thisdocument. Oncethe tableisfull, any code aeas nealing alabel
will still be disassembled with a“Lxxxx” label, however, the location itself won't have the label
labeling the line, and thus probably will not re-assemble without giving an urresolved reference or
unknown label error. The output is dill very useful, espedally if you use the “addresses’

Page 28 of 44

command in the Control File to output the aldresses, and if there aen’t too many misgng labels, it
may not be too kig of a chore to add them by hand later.

*** \Warning: Memory wrap around encountered, Chedk Load Off set/Fil e Length
Thisindicaes that during the loading of the Source Fil g, the fil e went past the 64K limit of the
processor space The aombined length (or size) of the Source File and the spedfied starting or
“load” off set must not excead 64K or OXFFFF+ 1. For example from the sample Control File, we
have aSourceFile that is 48K (or 0xCO0O0 hytes) and aload dff set of 0x4000(or 16K). Together
that is 64K or 0x1000Q which is OxFFFF+ 1. If we were to spedfy a starting addresshigher than
0x400Q the file would “wrap around” at the end of the 64K boundary of the processor bacdk to an
addressof 0x000Q In this particular version, the wrap will proceal bad around to address
0x0000and the file will continue loading from there. However, future versions may, and probably
will, terminate the fil e loading at the 64K boundary. So it isnot agood padiceto rely on this
wrapping effed in thisversion. If your fileistoo large to fit inside of 64K, such asthat from a
128K Flash ROM or EPROM, then look for how the OEM of the equipment is bank seleding the
data. | guaranteeyou that no more than 64K isadually visibleto the HC11 at any given time.
Thismeansyou'll haveto breg the sourceinto multi ple smaller parts and figure out how they
relate. Andyes, I've seen 128K and even larger fil es for the HC11 that were bank seleded. This
version provides no suppart for bank seleding, as the HC11 has no internal means (no machine
instructions, etc) for doing bank seleding of external memory — meaning that every
implementation of it will be unique. Future versions may all ow for emulation of bank switching
methods, but you'll still have to reverse enginee the system enoughto figure out what those
methods are and write afunction or interfacefor the disassembler to emulateit. And, it may not be
possble to emulate dl methods.

** Warning: Too many ENTRY Commands
The number of “entry” commands that can be spedfied in the Control Fileislimited becaise of
memory constraints. However, usualy very few dired entry points have to be spedfied because
most will be done with indired vedors. If you run out of entry paints, and redly need more, you
can always “bed the system” by spedfyingthem in an unwsed pation of the source binary and
using an “indired” command in the Control File. There SHOULD be an untsed pation in the
source, asthere hasto be some sort of RAM memory used in the MPU. The desired effed will
result and you will have “beaen” the entry point limit. However, I’ve never runinto any red
world appli caion that needed more entry paints than could be spedfied, since most things arealy
areindireds— like interrupt vedors, jump tables, etc. Seethe sedion Limitationsin This Version
in this document.

*** Warning: Unrecognized command in Control File
This means that one or more commands in the Control Fil e were not reamgnized. Ched to make
surethat all li nes are dther blank, start with a semicolon (*;") for a comment line, or begin with one
of the valid commands described in this document — perhapsit isjust atypo. The commands can
be uppercase or lowercase or mixed, as everythingis converted internally to uppercase. All values
must be in hexadeamal with no ‘Ox’ or ‘%', etc, beforeit, and no ‘h’, etc, after it — everythingis
assumed to be in hexadedmal and may be falsely converted to zero (0) if you do aherwise. Future
versionswill alow for different bases, but not this one.

Page 29 of 44

Disassembly Pitfalls

There ae many pitfall s often encountered when reverse engineaing and/or hadking a particular system.
Many aren’'t spedfic to any system, and sincethis document is not an explanation of how to doreverse
engineaing, we will only talk about things gedfic with the HC11 and more spedficdly about this
disasembler.

Code Inline Data

Thefirst big quirk or pitfall that comesto mind is data bytes passed on “jsr” or “bsr” instructions inline with
the code. Some HC11 compil ers, such as Cosmic C, make standard pradice of this. For example, suppose
you have the foll owing code:

A_FUNC: .set OFST=12
jsr c_ents
.byte 12
Idd #3
jsr getvalue
clr 2,X
clr 3,x
std OFST-2,x
ldd 2,x
std OFST-4,x
clra
clrb
std 2,x

Thisisasnippet of code from ared compiled program. Noticethe “.byte 12" after the “jsr”. That isan
inline data agument passed to the function “c_ents’. It is cleaner and has lessoverheal than pushing and
poppngthe agument on the stadk, but it causes problems with any disassembler. The problemisthat the
disassembler has no way of knowing that the “12" (or OxOC) after the “jsr” isin fad a data byte. It will be
assuming that the bytes immediately foll owing the “jsr” will be the next instruction. In this particular case,
since OxOC is equivalent to the “clc” instruction — which happens to be aone byte immediate instruction,
thiswill beinterpreted by the disassembler as (OFST=12):

A_FUNC: jsr C_ENTS
cle
Idd #3
jsr GETVAL
clr 2,X
clr 3,x
std 10,x
ldd 2,x
std 8,x
clra
clrb
std 2,x

Inthiscase, it isonly abit confusing as you may think the “clc” (or clea-carry instruction) is a legitimate
command and that may cause you to incorredly interpret the code followingthe “jsr”. In other cases, it can
be more extreme. Suppcse that instead of a simple one-byte immediate instruction, the byte happened to be
the first byte of atwo, three or more, byte instruction? Then it could be that the “ldd #3 that foll ows and
possbly even more instructions would get mangled as well, into erroneous instructions. Eventually, either
the number of bytes will happen to fall bad on track or you'll encounter an ill egal byte that creaes an
unkrown instruction for the processor — either will get the disassembly bad on tradk. But, this can cause
problems with the cde seeker, becaise suppose that one of the @roneous instructions happened to be a
branch or jump of some sort, or worse yet isareturn instruction. Or what if one of the mangled instructions
was supposed to be ajump or branch. Inthefirst case, you'd be alding extraincorred branches (and may
possbly pre-maturely end the aurrent code sedion) and in the last case you'll fail to add a branch that
should be added, which uressit is cdled elsewhere will result in code sedionsthat will be outputted as
data

Thefix for thisproblem isn't aseasy asit appeas. If ead function had inline data of afixed length, it

would befairly easy — you simply implement another list in the disassembler and spedfy that function “xyz”
always has, for example, 2 bytes of data following any jump or branch to that function. The disassembler,

Page 30 of 44

when it encounters a cdl to function “xyz”, would simply trea the 2 bytes followingthe cdl asdata. But,
the problem isthat first you have to redizethat that particular function uses data bytes in that fashion and
tell the disaseembler and that it is always 2 data bytes. What dowe doif the number of bytesis variable?
How can the disassembler know? An example of variable length would be anull-terminated string passed
asinline data dter a cdl. Thelength is determined by where the null is placed. Or what if, instead, itisa
length/string argument where the first byte dter the cdl isthe length of the string or data that foll ows?

Asyou can see thereisn’'t an immediate, simple, fix-all solution. So, this version of the disassembler
doesn’'t ded with the problem at all. (Sorry). In future versions, I'm contemplating a “fixed length” solution
and pcssbly a solution of objed types whereby you can spedfy certain typings and/or methods that the
disaseembler can use to figure out lengths on variable inline data.

Undetermined Branch Address

Another very common pitfall i s when the disassembler encounters a branch that it simply cannot figure out
—such asabranch that is based off of register value. An example:

jsr 0,x

Sincethe disassembler has no way of knowingwhat valueis contained in “x” it will not know what address
the“jsr” branchesto. When this occurs, the disassembler will comment the output fil e with “Undetermined
Branch Address'. Fortunately, many of these ae simple jump tables. Look at the code procealingthe“jsr”
for any loading of the “x” register. Oftenyou'll seethe aldressof a branch table |oaded and then an off set
inthe table alded to it. That will be followed by somethinglike “ldx 0,x” to load the ad¢ua vedor from the
table and then you'll havethe “jsr 0,x”. All you haveto doisadd“indired” commands to the Control File
for ead entry in the branch table axd then re-runthe disassembler. Thiswill allow the disassembler to
tradk and dsasemble dl of the amde that isthere. | usually use the mnvention of naming the first indirec
inthefirst jump table & “JT1R1" (for jJump table 1 routine 1), the next routine & “JT1R2”, and so on.
When | come to the next table, | use“JT2R1", etc. Later on, oncel acdually figure out what “JT1R1", etc,
redly do, I'll give them more meaningful names. Y ou may have abetter method —so use whatever works
well for you.

Unfortunately, there ae still occasional cdls, jumps, or branches that are not determinable by the
disassembler and that even when you look at them, you can’t figure out what they are & they may have no
obvious jump table. Theonly solution for thisisto figure out what the rest of the ade does and work to
figure out exadly what is cdled by theill usive function. 1I’ve dways found that by working on other parts,
parts that were more obvious, then eventually, before dl was sid and dane, that | knew exadly what this
cdl wasfor and why it was D illusive. But in any case, it does make life more difficult.

Addresses as Immediate Values

When adisassembler encounters an immediate value for an instruction, it has no way of knowing whether it
should betreded strictly asavalueor if it isredly an address or worse yet, an off set to some aldress For

example, suppaose you encounter a system that, for the sake of argument, still has the HC11 registers located
at 0x1000in the HC11 memory space And, you come agossa routine that reads/writes from the SCI data

register at 0x102F. Y ou may encounter simple reads and writes diredly to this address such as:

Ida $102F

(which is an extended addressng mode) which would be interpreted by the disassembler as:

lda L102F

You can later equate L102F with SCDR and your done.

Page 31 of 44

But, you may encourter something like:

Idy #$102F
Ida 0y

In this case, sincethe Ox102F is an immediate value, the disaseembler has no way of knowing that it redly
corresponds to an address For these, you'll have no choice but to manually change the $10Z to SCDR
(don’t forget to add the label for 0x102F as SCDR in the Control File):

Idy #SCDR
Ida 0y

Worse yet, you can aso encounter the foll owing:

Idy #$1000
Ida $2F,y

Here, the immediate value 0x1000is the base aldressof the registers and Ox2F isthe offset. Thisiswhy on
the Portsfilesthat | included, you'll seebath dired addresses and register base relative aldresses. That
way, you can manually convert thisto:

Idy #REGBASE
Ida PSCDR,y

Where “regbase” is defined by you as the base for the HC11 registers and should also be the aldressthat
you originate the corresponding “ports’ file when later re-assembling. In the example “ports’ files, you'll
noticethat I’ ve defined, in this particular case, SCDR as beingthe dired full addressof the SCDR register
or 0x102F (or wherever you originate the portsfile) and PSCDR as being a pointer to the register relative
addressof SCDR or 0x2F. Thisallows usto use both namesin the cde to cover whatever form they arein.

AsI’ve said, there is no way for the disassmbler to know when it encounters an immediate value if that
immediate value isredly an addressor if it isonly data, and register-off set addresses (such as the [da $2F,y)
are even worse yet. Thusthe only remurseisto manually edit it in the output file — Usually, search-and-
replaceworks well for this.

Code Paging

The HC11 can only diredly access64K bytes of memory. Thisincludesall RAM, ROM, Registers,
Memory-Mapped Devices, etc. Unfortunately, many programs, espedally those written by today’s
inefficient compil ers, exceeal thislimit. This causes the designer to have to implement work-arounds. The
most common is to implement a method d paging in multi ple banks of memory. Unfortunately, not only
doesthe HC11 not suppart more than 64K of dired access but also it has no built-in means for performing
paging either. Thus, the designer isleft to implement his or her own urique solution to the paging problem.

The biggest problem for the designer isn’t so much that there must be some external paging means, but that
there can be no dred accessof data from one page to another aaosspage boundaries — sincethere ae no
code-segment and data-segment registers as can be found in procesors like the 8088 For the reverse-
engnea and/or hadker, this further compli cates things because there is no “standard method” for
implementing the paging technique.

One common way to implement a simple 2-bank method isto use a128K byte ROM and conned the upper
addressline to an output port pin of the HC11. Part of the ROM’s code is duplicated from one half of the
ROM to the other so that it is accessble by the HC11 in both pages—i.e. the ammon page. The mmmon
page is the page that must do the adual page swaps. The other half of the ROM isunique to that page and
allows an extra extension of the ROM in the range of 32K to 64K depending on the sedions that must be
common and/or duplicaed aaosspages.

Page 32 of 44

Another common technique isto use PAL or PLD logic to serve & a page register. Thisallows for more
intricate design and layout of the pages and would all ow for more flexibility as to where the pages get
“banked-in” and when. But, thisredly makeslife difficult for the hader or reverse-engineq.

Thislist could go on and on — unfortunately — as there is no singe technique, not even a unique dozen, that
can describe dl the diff erent methods people have used for paging. Therefore, when reverse-engineaing
large projeds, it will be necessary to determine the paging technique (if any) by hand. It also means, since
the disasembler can only ded with the HC11' sdired 64K space that you must divide the source up into
multi ple files — ead corresponding to unique pages — and run them separately throughthe disassembler.
And, not only does the disassembler have problems with multi ple pages, but HC11 assemblers have
problems aswell. Most assmblerswill require that you uriquely assemble eat sedion and then link them
corredly into the mrred positionsin the final output file.

Laziness

“But | don't want to have to go throughthe program and tag all of the indired vedors and entry point
locdions; | just want it to dump out the amde.” Well, there isn’t much that can be done @out being lazy,
but there can be a“spit” mode that disables the mde-seeking portion — or more crredly, labels everything
as code —and dumps or “spits’ the disassembly out. This can be useful in systems that have alarge number
of indireds and you want to doa quick hadk on the file and dan't redly care aout truly reverse engineging
the mde.

When this program was developed, the initial goal was reverse engineaing, not hading. Therefore, this
version hasno “spit” mode. However, because of many requests from hadkers that want quick results,
future versions will i ncorporate a“spit” command in the Control Fil e that will disable the code-seeker and
simply output a disassembly of everything in much the same form of an ordinary “dumb” disassembler.

Others

Well, thisisabout all | can think of including at this present time. I’m sure there ae many more that
warrant being added to this document. If you know of any, let me know and it will possbly be included in
future aitions. Seethe Support sedion in this document for contad information.

Page 33 of 44

MC68HC11 Overview

As previously stated, the purpose of this document isn’t to tead you about the functionality of the HC11 —
that’s what Motorola s documentation isfor. However, for completeness | thought it wise to include alist
of opcodes and corresponding mnemonics that the disassembler processes as well as how the disassembler’s
code-seeker behaves with ead — and that is what the following table is all about. For everything else, chedk

out Motorola s website (WWW.MOt-Sps.com).

M nemonic Machine Form Disassembler Discontinue
Code Action Disassembly
test 00 test
nop 01 nop
idiv 02 idiv
fdiv 03 fdiv
Isrd 04 Isrd
Isld 05 Isld
tap 06 tap
tpa 07 tpa
inx 08 inx
dex 09 dex
clv 0A clv
sev 0B sev
clc 0C clc
sec 0D sec
cli OE cli
sel OF sel
sha 10 sha
cba 11 cba
brset 12 dd mm rr brset *dd,#mm,.+rr Add Data Label, Add Branch Addr & Label
brclr 13 dd mm rr brelr *dd,#mm,.+rr Add Data Label, Add Branch Addr & Label
bset 14 dd mm bset *dd,#mm Add Data Label
bclr 15 dd mm bclr *dd,#mm Add Data Label
tab 16 tab
tha 17 tha
iny 18 08 iny
dey 18 09 dey
bset 18 1C ff mm bset ff,y,#mm
bclr 18 1D ff mm belr ffy,#mm
brset 18 1E ff mm rr brset ff,y,#mm,.+rr Add Branch Addr & Label
brclr 18 1F ff mm rr brclr ff,y, #mm,.+rr Add Branch Addr & Label
tsy 18 30 tsy
tys 18 35 tys
puly 18 38 puly
aby 18 3A aby
pshy 18 3C pshy
neg 18 60 ff neg ff,y
com 18 63 ff com ffy
Isr 18 64 ff Isr ff,y
ror 18 66 ff ror ff,y
asr 18 67 ff asr ffy
Is| 18 68 ff Isl ff,y
rol 18 69 ff rol ffy
dec 18 6A ff dec ff,y
inc 18 6C ff inc ffy
tst 18 6D ff tst ff,y
jmp 18 6E ff jmp ffy Undeterminable Branch discontinue
clr 18 6F ff clr ffy
cpy 18 8C Jj kk cpy #jjkk
xgdy 18 8F xgdy
cpy 18 9C dd cpy *dd Add Data Label
suba 18 AO ff suba ff,y
cmpa 18 Al ff cmpa ff,y
shca 18 A2 ff shca ff,y
subd 18 A3 ff subd ff,y
anda 18 A4 ff anda ff,y
bita 18 A5 ff bita ffy
Idaa 18 A6 ff Idaa ff,y
staa 18 A7 ff staa ffy
eora 18 A8 ff eora ffy
adca 18 A9 ff adca ff,y
oraa 18 AA ff oraa ff,y
adda 18 AB ff adda ff,y
cpy 18 AC ff cpy ffy
Jsr 18 AD ff jsr ffy Undeterminable Branch
Ids 18 AE ff Ids ffy
sts 18 AF ff sts ffy
cpy 18 BC hhll cpy hhll Add Data Label
Idy 18 CE jj kk Idy #jjkk
Idy 18 DE dd Idy *dd Add Data Label
sty 18 DF dd sty *dd Add Data Label
subb 18 EO ff subb ff,y
cmpb 18 E1 ff cmpb ffy
sbhcb 18 E2 ff shcb ff,y

Page 34 of 44

addd 18 E3 ff addd ffy

andb 18 E4 ff andb ff,y

bith 18 E5 ff bitb ffy

Idab 18 E6 ff Idab ff,y

stab 18 E7 ff stab ff,y

eorb 18 E8 ff eorb ffy

adcb 18 E9 ff adcb ff,y

orab 18 EA ff orab ffy

addb 18 EB ff addb ffy
Idd 18 EC ff Idd ff,y
std 18 ED ff std ff,y
Idy 18 EE ff Idy ffy
sty 18 EF ff sty ff,y
Idy 18 FE hh Idy hhll Add Data Label
sty 18 FF hh'll sty hhll Add Data Label
daa 19 daa
cpd 1A 83 jj kk cpd #jjkk
cpd 1A 93 dd cpd *dd Add Data Label
cpd 1A A3 ff cpd ff,x
cpy 1A AC ff cpy ff,x
cpd 1A B3 hhll cpd hhll Add Data Label
Idy 1A EE ff Idy ff,x
sty 1A EF ff sty ff,x
aba 1B aba

bset 1C ff mm bset ff,x,#mm

bclr 1D ff mm belr ff,x,#mm

brset 1E ff mm rr brset ff,x,#mm,.+rr Add Branch Addr & Label

brclr 1F ff mm rr brelr ff,x,#mm,.+rr Add Branch Addr & Label
bra 20 rr bra .+rr Add Branch Addr & Label discontinue
brn 211 brn .+rr Add Branch Addr & Label
bhi 221 bhi .+rr Add Branch Addr & Label
bls 23 1T bls .+rr Add Branch Addr & Label
bce 24 1 bce .+rr Add Branch Addr & Label
bcs 25 1T bes .+t Add Branch Addr & Label
bne 26 m bne .+rr Add Branch Addr & Label
beq 27 11 beq .+rr Add Branch Addr & Label
bvc 28 rr bvc .+rr Add Branch Addr & Label
bvs 29T bvs .+rr Add Branch Addr & Label
bpl 2A T bpl .+rr Add Branch Addr & Label
bmi 2B rr bmi .+rr Add Branch Addr & Label
bge 2C Ir bge .+rr Add Branch Addr & Label
blt 2D rr blt .+rr Add Branch Addr & Label
bgt 2E Ir bgt .+rr Add Branch Addr & Label
ble 2F r ble .+rr Add Branch Addr & Label
tsx 30 tsx
ins 31 ins

pula 32 pula

pulb 33 pulb

des 34 des

XS 35 XS

psha 36 psha

pshb 37 pshb

pulx 38 pulx
rts 39 rts discontinue
abx 3A abx
rti 3B rti discontinue
pshx 3C pshx
mul 3D mul

wai 3E wai

Swi 3F Swi

nega 40 nega

coma 43 coma

Isra 44 Isra

rora 46 rora

asra 47 asra

Isla 48 Isla

rola 49 rola

deca 4A deca

inca 4C inca

tsta 4D tsta

clra 4F clra

negb 50 negb

comb 53 comb

Isrb 54 Isrb

rorb 56 rorb

asrb 57 asrb

Islb 58 Islb

rolb 59 rolb

decb 5A decb

incb 5C inch

tstb 5D tstb

cirb 5F clrb
neg 60 ff neg ff,x

com 63 ff com ff,x
Isr 64 ff Isr ff,x
ror 66 ff ror ff,x

asr 67 ff asr ff,x
Isl 68 ff Isl ff,x
rol 69 ff rol ff,x

dec 6A ff dec ff,x
inc 6C ff inc ff,x

Page 35 of 44

tst 6D ff tst ff,x

jmp 6E ff Jmp ff,x Undeterminable Branch discontinue
clr 6F ff clr ff,x

neg 70 hhll neg hhll Add Data Label
com 73 hhll com hhll Add Data Label
Isr 74 hhll Isr hhll Add Data Label
ror 76 hhll ror hhll Add Data Label
asr 77 hhll asr hhll Add Data Label
Isl 78 hhll Isl hhll Add Data Label
rol 79 hh'll rol hhll Add Data Label
dec 7A BRIl dec hhll Add Data Label
inc 7Chhll inc hhll Add Data Label
tst 7D hhll tst hhll Add Data Label
jmp 7E hhll jmp hhll Add Branch Addr & Label discontinue
clr 7F hhll clr hhll Add Data Label
suba 80 ii suba #ii

cmpa 81 ii cmpa #ii

shca 82 ii sbca #ii

subd 83 jj kk subd #jjkk

anda 84 ii anda #ii

bita 85 ii bita #ii

Idaa 86 ii Idaa #ii

eora 88 ii eora #ii

adca 89 ii adca #ii

oraa 8A i oraa #ii

adda 8B ii adda #ii

CpX 8C jj kk cpx #jjkk

bsr 8D rr bsr .+rr Add Branch Addr & Label
Ids 8E jj kk Ids #jjkk

xgdx 8F xgdx

suba 90 dd suba *dd Add Data Label
cmpa 91 dd cmpa *dd Add Data Label
shca 92 dd shca *dd Add Data Label
subd 93 dd subd *dd Add Data Label
anda 94 dd anda *dd Add Data Label
bita 95 dd bita *dd Add Data Label
Idaa 96 dd Idaa *dd Add Data Label
staa 97 dd staa *dd Add Data Label
eora 98 dd eora *dd Add Data Label
adca 99 dd adca *dd Add Data Label
oraa 9A dd oraa *dd Add Data Label
adda 9B dd adda *dd Add Data Label
CpX 9C dd cpx *dd Add Data Label
Jsr 9D dd jsr *dd Add Branch Addr & Label
Ids 9E dd Ids *dd Add Data Label
sts 9F dd sts *dd Add Data Label
suba A0 ff suba ff,x

cmpa Al ff cmpa ff,x

shca A2 ff shca ff,x

subd A3 ff subd ff,x

anda A4 ff anda ff,x

bita A5 ff bita ff,x

Idaa A6 ff Idaa ff,x

staa AT ff staa ff,x

eora A8 ff eora ff,x

adca A9 ff adca ff,x

oraa AA ff oraa ff,x

adda AB ff adda ff,x

CpX AC ff cpx ff,x

Jsr AD ff Jsr ff,x Undeterminable Branch
Ids AE ff Ids ff,x

sts AF ff sts ff,x

suba BO hhll suba hhll Add Data Label
cmpa B1 hhll cmpa hhll Add Data Label
shca B2 hhll shca hhll Add Data Label
subd B3 hhll subd hhll Add Data Label
anda B4 hhll anda hhll Add Data Label
bita B5 hhll bita hhll Add Data Label
Idaa B6 hhll Idaa hhll Add Data Label
staa B7 hhll staa hhll Add Data Label
eora B8 hhll eora hhll Add Data Label
adca B9 hhll adca hhll Add Data Label
oraa BA hhll oraa hhll Add Data Label
adda BB hh I adda hhll Add Data Label
CpX BC hhll cpx hhll Add Data Label
Jsr BD hhll jsr hhll Add Branch Addr & Label
Ids BE hhll Ids hhll Add Data Label
sts BF hh Il sts hhll Add Data Label
subb CO i subb #ii

cmpb Clii cmpb #ii

shcb C2ii shcb #ii

addd C3 jj kk addd #jkk

andb C4 ii andb #ii

bith C5 ii bitb #ii

Idab C6 i Idab #ii

eorb C8ii eorb #ii

adch C9ii adcb #ii

orab CAii orab #ii

addb CB i addb #ii

Idd CC jj kk Idd #jjkk

cpd CD A3 ff cpd ff,y

Page 36 of 44

CpX CD AC ff cpx ffy

ldx CD EE ff ldx ff,y
stx CD EF ff stx ff,y
ldx CE jj kk Idx #jjkk
stop CF stop
subb DO dd subb *dd Add Data Label
cmpb D1 dd cmpb *dd Add Data Label
sbcb D2 dd sbcb *dd Add Data Label
addd D3 dd addd *dd Add Data Label
andb D4 dd andb *dd Add Data Label
bith D5 dd bitb *dd Add Data Label
Idab D6 dd Idab *dd Add Data Label
stab D7 dd stab *dd Add Data Label
eorb D8 dd eorb *dd Add Data Label
adch D9 dd adcb *dd Add Data Label
orab DA dd orab *dd Add Data Label
addb DB dd addb *dd Add Data Label
Idd DC dd Idd *dd Add Data Label
std DD dd std *dd Add Data Label
ldx DE dd Idx *dd Add Data Label
Stx DF dd stx *dd Add Data Label
subb EO ff subb ff,x
cmpb E1 ff cmpb ff,x
sbcb E2 ff shcb ff,x
addd E3 ff addd ff,x
andb E4 ff andb ff,x
bith E5 ff bitb ff,x
Idab E6 ff Idab ff,x
stab E7 ff stab ff,x
eorb ES8 ff eorb ff,x
adch EQ ff adcb ff,x
orab EA ff orab ff,x
addb EB ff addb ff,x
Idd EC ff Idd ff,x
std ED ff std ff,x
ldx EE ff ldx ff,x
Stx EF ff stx ff,x
subb FO hh Il subb hhll Add Data Label
cmpb F1hhll cmpb hhll Add Data Label
sbcb F2 hhll sbcb hhll Add Data Label
addd F3 hhll addd hhll Add Data Label
andb F4 hh'll andb hhll Add Data Label
bith F5hhll bitb hhll Add Data Label
Idab F6 hh'll Idab hhll Add Data Label
stab F7 hhll stab hhll Add Data Label
eorb F8 hh Il eorb hhll Add Data Label
adch F9 hhll adcb hhll Add Data Label
orab FA hh Il orab hhll Add Data Label
addb FB hhll addb hhll Add Data Label
Idd FC hhll Idd hhll Add Data Label
std FD hhll std hhll Add Data Label
Idx FE hh'll Idx hhll Add Data Label
Stx FFhhll stx _hhll Add Data Label
Where:
dd = 8-Bit Dired Address(0x0000 — &00FF). Highbyte assumed to be 0x00.
ff = 8-Bit Positive Offset 0x00 (0) to OxFF (255 added to index register value.
hh = High Order Byte of a 16-bit Extended Address

ii = Single Byte of Immediate Data.
il = High Order Byte of 16-Bit Immediate Data.

kk = Low Order Byte of 16-Bit Immediate Data.
I = Low Order Byte of a 16-bit Extended Address
mm = 8-Bit Mask (Bitsthat are set are the hits that will be dfeded).

rr = Signed Relative Off set 0x80 (-128) to Ox7F (127).
Off set isrelative to the addressfollowing the machine mde offset byte.

Instructions li sted as “discontinue disassembly” are instructions that end the arrent stream of code. The
code-seeker starts with the first entry point and disassembles urtil one of the foll owing conditionsis
satisfied:

e Aninstruction flagged as “discontinue” is encountered (these ae hard jumps or returns)

* |t encounters code that has already been tested.

e It encountersanill egal instruction (an opcode byte that isn't in the ove table)

It then reads the next entry point, and continuesiiterating urtil all entry points are exhausted.

Page 37 of 44

Reassembling a Disassembly

As gdated ealier in this document, there ae typicdly two approachesto disassembly work — hadking and
reverse-engineaing. Typicdly, the hadker isonly interested in finding out what isin a program or binary
enoughto complete ahadk and isn’t interested in the overall scheme of figuring out the how and why of the
workings of the entire system. So for the hadker, being able to reassemble adisassembly is probably of

littl e or no importance. However, to the serious person working on fully reverse engineeing a system,
being able to easily ressemble adisaseembly isalife-send. The M6811Code-Seeking Disassembler was
designed for the reverse-enginea and so the output was targeted for a spedfic sssembler.

Thisdisassembler targetsisthe AS6811assembler written by Alan Baldwin at Kent State University’s
Physics Department (not to be confused with the M otorola AS11 freeware assembler). Alan’sentire
assembler set and relocaing linker is a superb pieceof workmanship, which iswhy it was chosen as the
target output form for this disassembler.

The AS6811assembler isavail able in freaware/shareware form with complete source mde and can be
found on many freewvare CD-ROM sets, including several by Walnut Creek. So, you should be &leto
locae the assembler without problem. If not, you can download it from my website, or other site, as
described in the Support Sedion of this document.

For most programs, you can use the assembler unmodified to reasssemble this disassembler’s output badk
into the original binary. However, there ae afew considerations you should kegp in mind. Thefirst oneis
the memory model that the pre-compil ed version of the assembler is designed for. Sometimesit is
necessary to rebuild the ssseembler from the source using alarger memory model in order to assemble very
large HC11 programs.

Another problem, and probably the main problem, isthe extended addressoptimizer in the assembler.
Alan’s asembler, when gven an addressin the 0x0000to OxOOFF range, will optimizethe asembled code
to be that of a Dired AddressMode instruction (seethe tablesin the MC68HC11 Overview sedion of this
document) regardlessof whether you spedfy it asa Dired Mode instruction (“*” operator) or not.
Ordinarily, thisis agoodfedaure of the assembler and all ows you to produce binary fil es that are properly
spaceoptimized. However, the HC11 also all ows for Extended AddressMode instructions to also access
the range of 0x0000to OxOOFF. This can cause output from the disassembled code, when resssembled, to
not match that of the original binary if the original binary has one or more instructions that are not
optimized into the Dired Mode form — not a goodthing when reverse-engineaing.

To solve this problem, this disassembler will usethe “*” operator for the target addresson all Dired
AddressModeinstructions. This sould signify to the assembler that it isindeed a Dired Addressin the
0x0000to OxO0FF range. Any extended addresses will be outputted by the disassembler with no prefix
operator. The asmbler should interpret these addresses as being Extended Mode aldresses, regardlessof
the fad that they might be in the 0x0000to OxOOFF range. Unfortunately, this means that Alan’s assembler
source @de must be dtered to disable this optimizing feaure in order to producetruly compatible binaries.

So, | recommend you download the source ®@de version of the assmbler, disable the optimizer, and
recompil e in alarge memory model. Again, refer to the Support sedion in this document, as| do dfer an
already modified version of the assembler bath in source and in binary form — but, to maintain proper
redistribution palicies of hislicense, | do haveit in the true, unmodified form. So while you can use the
unmodified version for reassembling code that is anatomicdly corred, you should be avare that if you
ressemble and the sizes and/or addresses don’t seam to match, start looking for optimized verses non-
optimized instructions. Typicdly, thefirst point of divergencewill be the first non-optimized instruction.

Other detail s of assembly are out of the scope of this document — for those, | refer you to Alan’s manual that
comes with the assembler, as well as Motorola documentation.

Page 38 of 44

Limitations in This Version

Thisversion, sinceit is compil ed asa DOS mode 16-bit program, is limited to the 640K boundary of DOS.
Additionally, the compil er used also requires al objedsto be no larger than one 64K segment —in other
words, it uses only off set (16-bit) addressng for these objeds rather than afull 32-bit address Therefore,
all of theinternal tables in the program nust not exceal 64K. | guessl could have gotten fancy and had
multi ple parts of the table in separate 64K segments, but that would have grealy complicated the designand
would have slowed it down. Seethe sedion on Future Versions to seehow these limitations will be
eliminated in yocoming rel eases.

The worst two limitations are the name sizelimit for labels and the label table overal size— and yes, these
two arerelated. If the sizeof the label names were increased, the number of entries must be reduced. In
some large goplicdions, it ispossble to runout of label entries (as | have experienced), so | dedaded to
limit the name length for the labels as a trade-off between label name length and number of label entries.

The next big limitation is the number of branch table entries, but usually you run out of label table entries
first, since dl brancheswill get alabel in addition to the labels from the data aeas — so olviously more
labelsare used. Thusfar, I've never runout of branch table entries— yet.

Below is atable denoting the li mitations within this version:

Item Limit Units

Entry Address (Control File Only) 32 Table Entries
Branch Address Table 4096 Table Entries
Label Table 4096 Table Entries
L abel Name Size 6 Charaders
Indirect Table 512 Table Entries
Indirect Vector Types Code Only Vedor Type
Source Binary 65536 Bytes

File For mat Binary Only File Type
Number of L oadable Sour ce Files 1 Input Files
Number of Loadable Control Files 1 Control Files
Number Format (Control File Only) Hexadedmal Data Type
Code-Seeking Seek Only (no spit) Seek Methods

Page 39 of 44

Bugs

With any software gplication, it islikely that at least one bug will exist somewhere. Unfortunately, this
version of the M6811Code-Seeking Disassembler is no exception. However, al of the known bugs have
benign consequences, can be eaily resolved, and donot hinder the disassembly process Below isalist of
known bugs alongwith how to “fix” them. Obviously, these ae only the onesthat | know about, meaning
that there could be others. If you find additional bugs, or think you have, please contad me and let me
know — Seethe Support sedion for contad information:

Erroneous “*** Error: Opening Source File” messages
Thisis caused by amissngor corrupt “m6811ds.op’ file. Make sure that you have agood copy
of the m6811dis.op filein the current directory at the time you runthe disassembler. | failed to
reset the 10 error status after reading (or attempting to read) the opcodesfile. Sincethe sourcefile
isread after the opcodes fil g, this resultsin an erroneous error message indicating that the source
file has problems.

Program Runs Forever in an EndlessLoopand Fill s Up Remaining Hard Disk Space
The disassembler determines the end of the file by looking at loaded vs. unloaded perts of the
source binary. If you load afull 64K (65536 byte sourcefile, the program will erroneously loop
around (because of a 16-bit painter) and kegy looping when writing the output file. To fix this,
trim the unused RAM area and procesor register areaout of your sourcebinary file. You
shouldn’t be trying to load these unused pations anyway as they can cause aroneous output in the
output file by it thinking that a memory addresshas a cetain value when in redity it is dependent
upon what isin the RAM, which will obvioudly be different. There will be some RAM mapped
somewhere, asit is needed for stadk space

Mid-Opcode Labels Don't Get Reported in Output
Thisisn't so much of abugasit isfrom being either invalid code seeking from things such as Code
Inline Data (SeeDisassembly Pitfalls in this document) or incorredly spedfied labelsin the
Control File. What happensisthat if alabel is gedfied or generated and the aldressfor that label
happens to occur in the middle of an instruction (rather than being the aldressfor the first byte of
an instruction), the label doesn’t get assgned in the output file. In redity, this erroneous label
should have never gotten generated in the first place ad can be caised by you spedfying wrong
entry points and/or indired entriesin the antrol file, or by having the amde somehow skewed, such
aswith Code Inline Data, or by just having erroneous <rewy codein the first place Thisbug (or
quirk) isno hig ded and will only cause an assembler to later report that alabel wasn't defined.
Y ou should examine any such labelsto find the caise and if necessary, add equates before re-
assembling.

Page 40 of 44

Support

The Disassembler

I will continue to maintain this version and will be enhancingit and releasing future versions. Thisversion,
and future M6811 anly disassemblerswill be provided freeof charge axd can be fredy distributed provided
you supply the disassembler in its entirety, including suppart fil es, without changes or modificaions. This
does not apply to GenREP (the Generic Reverse Engineeing Platform) that I’m developing, which will
have aM6811module. That application, when completed, will be a @mmercia product — or so that isthe
current plan.

Currently, my ISP only provides dynamic |P suppart and so | cannot register adomain name for my web
server machine. However, | kegp adynamic front-end page on their server that constantly points to the web
server on my machine. The front-end page can be found at: http://home.midsouth.rr.com/dewtronics

Onceon my site, browse for the downloads-sedion. There you'll find thisM6811Code-Seeking
Disasembler (in any of the versions | creae), aswell asthe AS6811asembler both in virginand in
modified forms as described ealier in this document. | will also have wpies of some of the Motorola
documentation in .pdf format, since Motorola s website is © hideous (and almost imposshble) to locae
anything— or so it used to be unlessthey’ve recently changed its layout.

If you find any bugs, have suggestions or ideas for program enhancement, or have ay questionsin general,
you can email me &: dewtronics@tedh-center.com

Motorola

Documentation on the MC68HC11 processor family, as well as other assemblers, disassemblers, and
suppart utiliti es, can be found on Motorola s website — if you look hard enoughthat is. Unlessthey’ve
improved their site recently, it will take abit of hurting and searching around —though lkeep looking,
becaise it isthere somewhere. Their websiteis at http://www.mot-sps.com.

Third Party (Assemblers, etc)

Alan Baldwin's M6811assembler can be found on my website as well asfrom many freeware/shareware
CD distribution houses, such as Walnut Creek. Many of the CD-ROM’s are online and can probably be
found on the web, though| haven’t redly looked. The version | have tested against, Version 1.50, with
source, came diredly from Alan himself badk in April of 1995 Sincethen, he has generated newer versions
and made alditional enhancements. At the time of thiswriting, | have not confirmed the functionality of
newer versions with this disassembler. As| come acossother versions and resources, | will post them
online to be downloaded, but will keep Version 1.50 anline aswell sincel know for certain that it works.

Accordingto the AS6811 da@umentation, Alan can be readed at the foll owing address

Alan R. Baldwin
Kent State University
Physics Department
Kent, Ohio 44242
Phone: 330-672-2531
Fax: 3306722959

Page 41 of 44

His documentation also states that the assembler is avail able via anonymous FTP to: shop-pdpkent.edu.
And that it is also avail able from the C Users’ Group:

The C Users' Group

1601W. 23 Stred, Suite 200
Lawrence KS 660462700USA
Phone: 913841-1631

Fax: 913-841-2624

As | was writing this document, | chedked his anonymous FTP site and it does indeed contain a newer
version of the assmbler —Version 2.10to be exad, dated April of 1999 At first glance, there doesn’t
appea to be any problems with using this newer version. | will test it as 0on as possble and update this
document acoordingly. It doeslook like this new version has Linux suppart — hurray!

The ASxxxx colledion contains crossasemblers for the 680068026808, 6801(hd6303, 6804 6805
68HC08, 6809 68HC11, 68HC12, 68HC16, 8051 80858080, z80(hd64180Q, H8/3xx, and 6500
Series microprocesors.

You will probably want to have agoodhex editor aswell. A decent hex editor can be found at BregkPoint
Software, cdled Hex Workshop, at www.bpsoft.com.

Page 42 of 44

Future Versions

So what is planned in the future? Well, awholelot is planned. Thisversion was the first of many 6811
disaseemblersto come. Thisversion, Version 1.0, was originaly written in Borland Pascd 7.0 and will be
the baseli ne standard for the DOS 16-bit platform. | have ported it to MS Visual C++ 5.0 and creded a
DOS 32-bit version, which will soon be released asVersion 1.2. It eliminates al of the aurrent limitations
and is bounded only by avail able system memory. It usesaDLL classthat | cdl DFC (Data Fil e Converter)
to allow suppart for any sourcefile format — binary, Intel Hex, Motorola Hex, etc. For formats that |
happen to not supply a DFC for, you ssimply need to write aDLL to handle your new format — no

recompili ng, no rebuilding, just make aDLL and run.

At thetime | am writing this, the Version 1.2 works, but | would like to change the internal opcode seeker
to be ahash-table of hash-tables rather than a hash-table of arrays. For the 6811it won't make much
difference, but for other processors like the 6816and 68332 it makes aworld of differencein disassembly
time. So you say, why not relesse it and then update it later. Thereasonis|’'m creainga GDC class—
Generic Disassmbler Class— which will al ow disasssmblersto be excompassed by aDLL. Thiswill | ater
be used in the GenREP (Generic Reverse Engineaing Platform) program that | planto release & a
commercia product. Theideaisthat the program will not be dependent on any processor, any target
assembler, any file format, etc. You can simply load DLL filesinto the program at run-time.

So with this available, why do | still suppart Version 1.0? Well, Version 1.0 isa 16-bit application that can
rundiredly in DOS or DOS-Command Prompt mode. Version 1.2, athoughit isaDOS version, is a 32-hit
applicaion and requires MS Windows 95, 98, NT, etc, and hasto be runin a DOS Prompt Window. For
some, thisisn't acceptable.

| am aso writinga Version 2.0 that will be aWindows GUI for the disassembler. Thiswill alow for easy
graphicd entry and manipulation of Control Files, easy source aliting, etc. 1t will basicdly be afront-end
for the 32-bit Version 1.2 of the disaseembler.

| have dso recantly switched my personal machines over to Linux, abanding Microsoft almost entirely.
This means that before long, a Linux version will also be avail able and may acually bea the work-in-
progressWindows version. Currently, this application is afreavare gplication, but not an open-source
applicaion. | am considering making it open-source when releasing the Linux platform, but haven't fully
dedded yet.

Asfor kegoing uyp with what version iswhich, basicaly the first part of the version number will denote its
platform — 1= DOS, 2 = MSWindows, 3 = Linux Command Prompt, 4 = Linux X Windows GUI, etc.
Also, you might have suggestions or ideas for future versions — please send any suggestions/ideas to me.
And keep an eye on my website for future releases — seethe Support sedion in this document on how to
locate my website and how to contad me via email .

Below isalist of what is planned with eat version. Some of these have been put into place others il
have to be worked in:

Version 1.0 —DOS 16-Bit
Thisversion. Somewhat limited, but it runsin DOS on nealy any machine and isagred entry
level version.

Version 1.1 —DOS 16-Bit
This was an intermediate stepping stone version that was never released to the public. It added
multi ple sourcefil es, has “spit” output mode capabiliti es, and a few other dight feaures— but was
never refined.

Page 43 of 44

Version 1.2 —DOS 32-Bit
Upgraded to a 32-bit applicaion so there ae no memory limits other than the machine' s physicd
memory. DFC (Data File Converter) DLL’swere alded to suppart any source data fil e type.
Multi ple Source Filesis sipparted, asis multiple Control Files. 1t can suppart the “ spit” mode of
code-se&king. Mixed number basesis sipparted in the Control File. The disassembler has been
converted into a GDC (Generic Disasembly Clasg that will | ater allow easy porting into GenREP
(Generic Reverse Engineaing Platform) and will fascilit ate the development of disassemblers for
other procesors. Sincethere ae “no memory limits’, label names can be of any size and there can
be & many labels, branch references, indireds, and entry points as needed, and Indired Data
Vedors are supparted in addition to Indired Code Vedors. All that is misingisagraphicd front-
end. Thisversion isbasicdly finished except for changing the opcode table to be ahash table of
hash tables rather than a hash table of arrays. It will be released soon.

Version 2.0 —Windows 32-Bit (Win95, 98, NT, etc)
Thisisthe graphicd front-end that is“missng’ on Version 1.2. It will allow editing of source data
files, text editing of disassembly output files— including keegping comments and user edits sparate
from disassembly output so that if the disassembler is ever re-runon afile, you don’t have to re-
edit everything, and a graphicd interfacefor editing and entering the datainto the Control File
without generating the Control File by hand.

Version 3.0 —Linux (Command Prompt)
Thiswill be aport of Version 1.2 into the Linux environment. It is possble that the disaseembler
might become open-source 4d this gage to all ow migration to ather Unix platforms.

Version 4.0 —Linuxwith X-Window GUI
This can be thoughof as either a port of 2.0 to Linux or as awrapper for the 3.0 Linux version.

With the avent of GDC, it will be eay in the future for othersto creae modules for additional processors
and easily drop them into the program without having to modify or recompil e the main program at all .
Oncethis gets further along, and the spedfications and methodd ogy have been defined, | have in mind
releasing a“development kit” for those wantingto develop dsasemblersfor other processors. The kit will
be freg but what | ask in exchange is that you submit any additional disassembler modules you crede, so
they can be provided to the world to use free-of-charge.

Enjoy the disaseembler. | hopeit provesto be most helpful. Please visit my website (seethe Support
sedion) and register. | enjoy tradking the progressof my software and like to seehow many diff erent
courtriesit endsup in. You can also “vote for” those versions that don’t exist yet. Those with the greaest
number of requests will recave ahigher priority in the programming/debuggng process

Page 44 of 44

