
Dewtronics

M6811DIS v1.0 (DOS)
Code-Seeking Disassembler for the Motorola MC68HC11
Microprocessor

Version 1.0 of Software written April 15, 1996, © Donald Whisnant
Documentation for version 1.0 written September 27, 1998, © Donald Whisnant
Last Update: June 28, 1999

Page 2 of 44

Table Of Contents
Table Of Contents...2
Introduction ..3
Installation..5
Usage..6

Overview ..6
Step-by-Step Walk-Through...7

Control Files...15
Example Control File..16
Control File Commands..18

Switch Commands..18
ADDRESSES... 18
ASCII ..19
OPCODES..20

Value Commands.. 21
INPUT ..21
LOAD ...22
OUTPUT ..23

List Entry Commands...24
ENTRY...24
INDIRECT..25
LABEL ...26

Error and Warning Messages..27
Error Messages...27
Warning Messages..28

Disassembly Pitfalls..30
Code Inline Data...30
Undetermined Branch Address...31
Addresses as Immediate Values..31
Code Paging..32
Laziness..33
Others ...33

MC68HC11 Overview.. 34
Reassembling a Disassembly ..38
Limitations in This Version ..39
Bugs..40
Support ...41

The Disassembler..41
Motorola...41
Third Party (Assemblers, etc) ...41

Future Versions...43

Page 3 of 44

Introduction
A disassembler is a program that takes binary memory images and/or object code data files and converts
them into the mnemonic equivalents for the processor the code was developed for. It is sort of like
decompili ng code except that if the original code was written in a higher level language (language other
than assembly), you only get the equivalent assembly code rather than the language the original code was
written in.

So what is a disassembler good for? The primary use for a disassembler is to either reverse-engineer or
hack a program. In the realm of software, typically reverse-engineering involves taking an entire program
apart to figure out exactly how it functions, usually in an effort to understand the overall system and
possibly improve upon it or otherwise extend its use. Hacking, on the other hand, typically involves taking
a program apart only to the extent of finding one or more particular items of interest usually to modify those
parts to achieve some goal, while not necessarily trying to gain a full working knowledge of how the whole
system works. An example of reverse engineering would be a complete disassembly of a vehicle ECM
calibration to write out a complete description of the control algorithms used by the vehicle computer. An
example of hacking would be disassembling that code only enough to find one or two numbers that contain
the speed-limiter on the vehicle, without getting a working knowledge of how this speed-limiter actually
works. There are times and places for both reverse-engineering and hacking and even combinations of the
two. To any extent, one of the primary tools used by both hackers and reverse-engineers is the
disassembler.

What is a code-seeking disassembler and why is it so special? Any binary program image, especially
those for processors using Von Neumann architecture, will contain a mix of program bytes and data bytes.
Traditional disassemblers typically start at the first address of the binary image and disassemble to the end
of the binary image treating everything as code. In the end, you end up with a file that contains most of the
correct code mixed with lots of garbage from the data. Sometimes this isn’ t a problem, especially if the data
areas are small and very distinguishable. But, depending on the processor’s opcode list, it can cause the
disassembly in the good code sections to be skewed – resulting in several incorrect and/or incomplete
opcodes that later have to be disassembled by hand. This is where the code-seeking disassembler comes in
handy.

Unlike the typical “disassemble everything” method of the traditional disassembler, the code-seeking
disassembler actively seeks out and disassembles sections that it sees as code while leaving the rest tagged
as data. This is achieved by giving the disassembler one or more initial entry addresses into the code. From
these entry points, the disassembler continues to follow through the code as it hits jumps, branches, and
returns. In the end, you should have a perfect separation of code and data. There are some complications to
this. For example, what happens on a jump instruction that uses a register to obtain the address of the
branch, such as is common with a jump table? The disassembler has no way of knowing exactly what the
content of the register is, so it is forced to label the jump instruction as an “undetermined branch” . Such
tables have to be located by the user and added as additional entry points for the disassembler. Also,
suppose you don’ t enter all possible entry points – the result will be a file with hunks of code interpreted
incorrectly as data. And there are cases where there are unused bits of code that never get executed – those
will remain tagged as data. But overall , the code-seeking disassembler is far superior to its traditional
counter-part and in many cases, with littl e user intervention, can produce a perfect separation of code and
data which greatly facilit ates the reverse-engineering and/or hacking of the target code.

Is the disassembler output important? For hackers, the answer is “no” . This is because a hacker is only
interested in the code to the extent of finding the part(s) to achieve his hack. But, for the reverse-engineer,
it is a very important aspect. Often after reverse engineering a program, it is desired to reassemble the code
either in its original form (to test integrity and validity) or in an altered form after enhancements have been
made. Many disassemblers don't address this issue and produce an output that isn't compatible with any
existing assembler, resulting in hours of editing and reworking to get the code in the correct form. This
disassembler solves the problem by targeting a specific assembler. With the specified assembler, it is
guaranteed that the output from the disassembler, when reassembled will result in the original binary. The

Page 4 of 44

assembler this disassembler targets is the AS6811 written by Alan Baldwin at Kent State University’s
Physics Department (not to be confused with the Motorola AS11 freeware assembler). Alan’s entire
assembler set and relocating linker is a superb piece of workmanship, which is why it was chosen as the
target output form for this disassembler. See Reassembling a Disassembly later in this document for more
information on this assembler.

What else you need to know. In order to make sense out of the output from this disassembler and to
effectively use this program, it is necessary to first famili arize yourself with the MC6811 microprocessor
and have an understanding of assembly language and techniques in general. Such instruction is outside the
scope of this document. For it, I refer you to documents such as the “M68HC11 Reference Manual”
available from Motorola as document M68HC11RM/AD. And the processor-variant specific pocket
reference guides, such as the “MC68HC11F1 Programming Reference Guide” and “MC68HC11E9
Programming Reference Guide” will come in handy as well – the Motorola part numbers for these
documents are MC68HC11F1RG/AD and MC68HC11E9RG/AD, respectively. The one(s) you will need
will be dependent upon the particular processor used by the device under study. For other variants of the
HC11, the document number is typically MC68HC11 followed by the variant code and then “RG/AD”.
Technical data references for a specific series are also available. These typically have document numbers
of M68HC11 followed by the series code followed by “ /D” . Examples of these are “MC68HC11N/D” for
the “N-Series” and “MC68HC11F1/D” for the F1 series. All of these documents are available from
Motorola’s website (www.mot-sps.com) and can either be downloaded as .pdf files or ordered in
printed form.

You will also need a method of obtaining the original binary that you wish to disassemble. Again, that is
outside of the scope of this document. To obtain the binary, you will probably need to obtain an EPROM
burner and/or reader. This document assumes that you’ve already obtained the target code and have saved
it as a binary format file. This version of M6811DIS only supports binary source files. Future versions will
include support for other formats.

In this document, as well as the disassembler output, hexadecimal values are expressed by prepending them
with “0x” .

Page 5 of 44

Installation
Installation of the M6811DIS program is simple and straightforward. Simply create a directory for the
program and place all of the distributed files in that directory. The current method of file distribution is
PKWare’s PK-ZIP version 2.04G. If you are installi ng from that zip file, then you’ ll obviously need to
have a copy of the unzip tool. If you don’ t already have a copy, it can be downloaded from
www.pkware.com. Chances are if you are reading this document, you already have that tool, since this
document is also zipped with the other files and placed into the M6811DIS.ZIP archive.

Once all of the files are placed into a single directory, you can simply change to that directory and run the
program. Note that you can run the program from a path in your path-statement, but the M6811DIS.OP file
that is used with this version must reside in the current directory at the time the program is run. This means
if you use the system path to execute the program from a different directory, you must first copy the .OP file
to the current directory prior to running the program. Future versions of this program will do away with the
.OP file and eliminate the need for copying it all over the place.

The following files are distributed with this version (1.0):
• M6811DIS.EXE – The main program executable.
• M6811DIS.OP – The opcodes file used by the executable.
• M6811DIS.DOC – This document in MS-Word 97 Format.
• M6811DIS.TXT – This document in Plain-Text Format.
• M6811DIS.PS – This document in PostScript Format.
• M6811DIS.PDF – This document in PDF Format.
• AV94BNBH.CTL – A sample control file to get your started.
• PORTSF1.ASM – Assembler file for the F1 HC11. Used when reassembling (AS6811).
• PORTSF1.H – Include file for the F1 HC11. Used when reassembling (AS6811).
• PORTSE9.ASM – Assembler file for the E9 HC11. Used when reassembling (AS6811).
• PORTSE9.H – Include file for the E9 HC11. Used when reassembling (AS6811).

Note that the “PORTS” files have nothing to do with the disassembly process itself and are not needed to
successfully disassemble a file, but they are rather useful when reassembling the disassembled code. They
are written to work with Alan Baldwin’s AS6811 disassembler, as is the output of the disassembler. The F1
and E9 are included because they are the most common variants of the HC11.

Page 6 of 44

Usage

 Overview
As mentioned in the introduction, this disassembler is a code-seeking disassembler. Therefore, it is
necessary to specify all code entry addresses and indirect vectors (such as interrupt vectors) used in the
target code. A minimum of only one entry address is required, but often it is necessary to specify multiple
entry points and/or indirect vectors, and it is also desirable to be able to specify meaningful names, or
labels, for these. It would be cumbersome to have to specify these each time on the command line, not to
mention the fact that you’d run out of command-line space. Therefore, the entering of these entry-points,
labels, and indirect-vectors is done with a “Control File”.

First, use a text editor of your choice and create a control file for the file you wish to disassemble. The
section entitled “Control Files” in this document describes the exact format and available commands to use
in creating the Control File. A sample Control File is included there as well as in the distribution. As a
very minimum, your Control File should include an “ input” statement and an “output” statement to specify
source and destination files, respectively. And, it should include at least one entry point, in some form, for
the code disassembly. If no entry points are specified in the Control File from either “entry” statements or
“ indirect” statements, the load address of the file is assumed to be an entry point. If the “ input” and
“output” statements in your Control File do not specify full paths, the current directory will be used.

With your Control File complete, bring up a DOS window (or run the machine in DOS mode), and enter
“m6811dis” followed by the name of the Control File that you used, from within the proper directory. It is
recommended that you use the extension of “ .ctl” for your Control Files, though this version will not
append the “ .ctl” should you fail to specify it with the filename on the command line. Therefore, if you use
the “ .ctl” extension, you must type it with the filename. Future versions will make better use of the “ .ctl”
extension. Once run, the disassembler will first display its findings from parsing the specified Control File,
and then it will l oad the source file, resolve any specified indirects, and disassemble the source file to the
specified output file.

During the disassembly process, the disassembler will display any labels that are created during the
disassembly process, as well as any warning or error messages. Labels are created anytime a direct
extended memory reference is encountered, regardless of whether it is an absolute or relative address. For
example, suppose a program contains a command to load the ‘X-register’ f rom the direct address of
0x103A. This would correspond to the instruction “ ldx 0x103A” . The label “L103A” will be automatically
created and assigned to address 0x103A and the disassembler will output “ ldx L103A” . If the address
wasn’ t included within the loaded file range, the disassembler will also output an equate of “L103A =
0x103A” so that the assembler will know that L103A is equivalent to the value 0x103A during re-assembly.
If the address was within the loaded file’s range, then the output line coincident with that address will be
prepended with the label followed by a colon – such as “L103A:” . However, if the load instruction was an
immediate value, rather than an address, such as the instruction “ ldx #0x103A” , the assembler will not
assign a label for 0x103A. The disassembler can only assume, in this latter case, that 0x103A is a constant
value and has no address relevancy. This may or may not be the case. If it does have address relevancy,
then you must manually rename it in the output file using a search and replace. In most programs,
immediate values are usually just constant values, but occasionally you’ ll run into one that is an address,
typically loaded into an index register, for indirect addressing in subsequent instructions.

If you wish to use more meaningful names other than something like “L103A” , then you should add “ label”
commands to the Control File and rerun the disassembler. The disassembler will t hen use the specified
label for the specified address, rather than making up its own “Lxxxx” label. However, on this version of
the disassembler, labels are limited to no more than six (6) characters. Future versions will support longer
label sizes.

Page 7 of 44

The disassembler is a two-pass disassembler. During the first pass, it iterates through the specified list of
entry addresses tagging those locations as code. For each entry address, it continues to tag successive
addresses as code until it reaches an instruction that ends that code section – such as an unconditional jump
or a return-from-subroutine (RTS) statement. Whenever a jump (or branch) is encountered, the target
address, if it is determinable (that is, isn’ t dependent on a register value or other unknown value), is added
to the list of entry points. This process continues until all entry points in the list have been exhausted.
During the second pass, it iterates over the entire length of the memory image and writes the output
disassembly file. All addresses that were tagged as being code during the first pass will be outputted as
code, otherwise, they will be treated as data and outputted as either binary or ASCII data (depending on
Control File settings and byte values).

The screen output during the disassembly process, containing new labels and disassembly warning
messages, is sent to “stdout” . This allows the output to be redirected into a log file for later reference using
the stdout redirect operator (“>”) on the command line – refer to DOS documentation on how to do
input/output redirection and piping.

 Step-by-Step Walk-Through
Here is an example dump of the screen output produced while running M6811DIS with the sample Control
File shown in the Control Files section, captured by using a stdout redirection. It is shown here in its
entirety because this it a very typical ill ustration of what most disassembly runs will be like and it allows us
to describe and explain what each part of the screen output is for:

M6811 Disassembler V1.0
Copyright(c)1996 by Donald Whisnant

Initializing...
Reading Control File...
 Load Address: 0x4000
 16 Entry Points:
 0x7C0B
 0x7C12
 0x7C1C
 0x7C22
 0x7C35
 0x7C6B
 0x7C7C
 0x7C83
 0x7C9C
 0x7CA0
 0x7CAA
 0x7CAE
 0x7CBE
 0x7CC2
 0x7CCC
 0x7CDD
 Source File: AV94BNBH.BIN
 Destination File: AV94BNBH.DIS
 21 Labels Defined:
 0xFFD6=SCIVEC:
 0xFFD8=SPIVEC:
 0xFFDA=PAIEVE:
 0xFFDC=PAOVEC:
 0xFFDE=TOVFVE:
 0xFFE0=TI4O5V:
 0xFFE2=TO4VEC:
 0xFFE4=TO3VEC:
 0xFFE6=TO2VEC:
 0xFFE8=TO1VEC:
 0xFFEA=TI3VEC:
 0xFFEC=TI2VEC:
 0xFFEE=TI1VEC:
 0xFFF0=RTIVEC:
 0xFFF2=IRQVEC:
 0xFFF4=XIRQVE:
 0xFFF6=SWIVEC:
 0xFFF8=ILOPVE:
 0xFFFA=COPVEC:
 0xFFFC=CMONVE:
 0xFFFE=RSTVEC:
Writing program counter addresses to disassembly file.
Reading Opcodes File...308 opcodes read.
Reading Source File...File Size: 0xC000
Compiling Indirect Branch Table as specified in Control File...
 [0xFFD6] -> 0xF494 = SCIRTN
 [0xFFD8] -> 0xF8EE = SPIRTN
 [0xFFDA] -> 0xF8E4 = PAIERT
 [0xFFE0] -> 0x7922 = TI4O5R
 [0xFFE2] -> 0x7986 = TO4RTN
 [0xFFE4] -> 0x79EA = TO3RTN
 [0xFFE6] -> 0xF8D9 = TO2RTN

Page 8 of 44

 [0xFFE8] -> 0xCC8A = TO1RTN
 [0xFFF2] -> 0x7597 = IRQRTN
 [0xFFF4] -> 0xF8B3 = XIRQRT
 [0xFFF6] -> 0xF8AE = SWIRTN
 [0xFFF8] -> 0xF8C4 = ILOPRT
 [0xFFFA] -> 0xF8C9 = COPRTN
 [0xFFFC] -> 0xF8CE = CMONRT
 [0xFFFE] -> 0xF8D3 = RESET

Pass 1 - Finding Code, Data, and Labels...
LC3BA LCD23 LC3CE LC4B3 LAE65 LEEAA LF26C LD425 L7C31
L7C34 LC6D1 L0002 L7C4A LE860 LE893 LC6F6 LC71D L7C59
LD2D7 LD399 L7C7B LC506 LC923 LCC1E L7C8C L7C8F LCCC9
LCE3D LA386 LD414 LD1D9 L7CBA L7CBD LCA43 LCACF LD9BB
LDA49 L02BE L7CD9 L0004 L7CDC L7CE6 L7CE9 LF4A4 LF4CB
LF5B5 L3024 L3025 L7972 L0046 L7954 L0273 L025D L7942
L7945 L0825 L7962 L79D6 L79B8 L79A6 L79A9 L0827 L79C6
L301A L3023 L0000 L0044 L7A05 LF705 L3022 L3FC8 L0226
LCC9C L0062 LCCC8 LCCBD LCCC5 L759E LF8BB LF8B1 LF8C7
LF8D6 LF8D1 L7200 LEF12 LEEFC L0055 L0130 LCD2C L0118
LCD41 L012E L007F LCD78 LC3F1 L0316 LC454 LC4C4 L001B
LC4D1 L400F LAE6F LAF16 L082D L0192 L082F L009F L00A1
LEEFB L0082 LF273 L1806
 *** Warning: Branch Ref: 0x1806 is outside of Loaded Source File.
L0F00 LE444 LE46C LE45C L0080 L00D3 LD491 LD8FE LD444
LD478 LC32A LEC80 LECCD LEAEE LEB2F LEB70 LE7EF LE82B
LEA28 LE8C6 LE8C7 LE8C8 LE8FC LE50E LE542 LC78A LC7E0
LC805 L006F L0016 L7C63 L0017 L7C6A L003B LE892 LE88E
L0165 LE882 LE88F LE8C5 LE8C1 L0166 LE8B5 LE8C2 L0043
LC706 L004E LC717 LC71A L00AE LC72A LC732 LC734 L00AF
LF0D3 L672E L0083 LC74B L672D LC754 L00A3 L5D28 LC75F
L5D29 LC767 L5D2A LC770 LC787 LD2E1 LD398 LD3A2 LD3C6
L0088 LC51D L009C LC530 L0087 LC529 LC543 LC53C L0096
LC54A LC55D L0183 L0085 LC55A LC569 L0182 LC575 L0122
L0089 LC595 LC58E L00D1 LC5A3 LC5B1 LC5E2 LE434 L0092
LC5D5 LC5C4 LC5D2 L0050 LC93B LC93E LCC89 L022C L0019
LCC72 L0006 L45AC LCC86 L01E3 L45AD L01E5 LCC44 L45AE
L022F L45B0 LCC66 L45AF L0052 LCC5D LCC78 LF279 L9F7C
LC879 LAD62 LCCE9 LF15E LCCE0 LCCE6 L5B03 L4E6B LCD0B
L4E6C LCD1D L022A L4E6A LCD18 L400B LCE55 L0253 L006E
LCE52 LCEB0 L02A5 LCE64 LCE6A L004F LA38D LA4DC L0812
L02A7 LD1E0 LD2D6 LCA56 L48B4 L01F3 L01F8 LCA59 L4E7F
LF0F6 LCAE8 LCB3A L00F8 L4E3B LDA32 LD9FE L4E37 L0240
L4E38 LDA03 L4E3D LDA06 LDA53 LDA60 L0071 LDAB5 LC30B
LE3ED LE4B9 LE046 LF4B1 LF4CC L302E L302F L0364 L0369
LF5E3 L0363 L0362 LF5FF LF5DB LF5E5 LF660 L0821 L7983
L795D L0823 L79E7 L79C1 L003A L7A17 L7A14 L0003 L7A20
L7A3B L0391 L0072 L0392 L9286 LF08B L082E L7A73 L7A70
L4E5F L01FC LF137 L4E5E L4139 L0047 L7A7D L4138 L01E6
L01E9 L3030 L7A95 L3031 L3032 L3033 L3034 L0148 LEEE2
L7CF6 L3FFA L0073 L7AD4 L3FC4 L080D L080C L0146 L3068
L7E04 L7B00 L7AFF L7AF7 L4953 L0051 L7B0F L7B11 L001A
L7B2D L7B7C LAD0C L303A LF72C LF72D L0366 LF749 LF081
LF753 L0001 L0390 LF771 L0230 L300E L3016 L75C3 L306F
L75DB L75E2 L76FD LCA8A L306E L723A L3FFC LF08A L725B
LEF9A L7282 L72C3 L00A0 L7548 LEF11 LEF04 L0093 LCD4A
LCE3C LC44A L0317 LC464 LC40D L0061 L4153 LC45F L4154
L4158 L4155 L0201 LC42E L4156 LC440 LF17B LC451 L4157
LC46B LC4D5 L0018 LC503 LAE8B L5151 LAE99 L5155 L0853
LAF0D L001D LE458 LE454 LE47C LE478 LE468 LD4D9 LD4A4
LD4CF LD90A LD906 LD908 LD8DC LD451 LD48C L019D LD4DA
L004C LC348 LC35C LC361 LECCC LECC8 L0169 L0084 LECAF
L0090 L001C L0026 LED09 LED05 L016A LECF9 L008F L0027
LEB2E LEB2A L0175 L0098 LEB04 LEB1E L002B LEB6F LEB6B
L0176 LEB45 LEB5F L002C LEBB0 LEBAC L0177 LEB86 LEBA0
L002D LE82A LE822 L0162 LE814 L0091 LE85F LE85B L0164
LE84F LEA7A LEA76 L5B95 LEA4B LEA54 LE8FB LE8F7 L0167
LE8EB LE8F8 LE92F LE92B L0168 LE91F LE92C LE541 LE53D
L0159 LE531 LE53E LE575 LE571 L015A LE565 LE572 LC79B
L00A2 LC7AE LC7B1 LC7ED LC7F5 LC7F7 L02A6 L0208 L0266
LC829 L003F LC83E L48D9 L48DE L0295 L01EE L01DE LC862
LC868 LF136 L0842 LC922 LF0E0 LF0E4 L5D2B L00A5 LD2EB
LD2EE LD3B0 LD3C9 L00DC LC5EC L0127 L010A LC622 LC606
L0086 LC603 LC6CA LE440 LC949 LCA42 L45B2 L45B3 L022D
L45B1 L1800 LF284 L180C
 *** Warning: Branch Ref: 0x180C is outside of Loaded Source File.
L9F83 LA370 LC8BF L0252 LC88C LC893 LAD6C LAE64 LF172
LF178 LCF37 LCE70 L9DE0 L087B LA3B0 L087C LA39F L4F27
LA3A5 LA3AD L4F26 L086B LA3D0 LA3BC LA3CD L400C LD21A
L402C LD1FE L402D L01F9 LD2CB L03B2 LCA61 LCA7C LCA80
LF100 LF103 LCAFE LCB2F LCB34 LCB3C L0855 LDA45 L4E3E
LDA2A L4E3F L0241 L4E40 LDA2F L024E LDA70 LDAC6 L003C
L0239 LDAC2 LDFA8 LE6B4 LE74D LEC7F LED0A LED63 LE9DC
LEAAE LEDD5 LEDD6 LEE44 LE410 LE3F3 LE088 LE085 L4E7E
LE06C L4E7D LF4FC L0042 LF4F4 LF4E9 L039B L0367 LF590
LF60F LF65A LF5EE LF5F5 LF6F7 L000A L9292 L929B LF09A
L3060 L004B L3062 L3064 L004D L3067 LF13D LF15A LEEF6
L7D08 L014A L0149 L7D8B L7E0E L7E17 L7E12 L7B51 L924A
LA53C LD075 LD11D LF285 L7B49 LB773 L7BA9 L7BB7 L7BE6
L7BAC LAD59 L3FC0 L005F L020B L4142 LAD2C LF1ED LAD44
LAD4B L3066 LF774 LF763 LF87E L0068 L006A L75F5 L02F0
L75FF L02EC L7743 L028B L770B L02F1 L7720 L081E L495A
L028A L7740 L7786 L7767 L0053 L77C9 L0277 L7762 L77AF
L3061 L3063 L3065 LEFA8 LEFC2 L0005 L303F L72D2 L72EC
LCD58 LCD60 L5E8E LCD7B L5E8B LCD75 L5E8A LC47A L01EF
L0207 L0206 L01F0 L01F1 LC46E LF184 LF189 LF1B4 LF1BA
LC4DF LC4EC L00A6 LAEA2 LAF02 L0854 LE49F LE486 LD4E3
L0180 LD4EB LD4F1 LD4F7 LD50F LD505 LD50D LD4B1 LD91B
LD92C L0099 LD927 LD932 LD8FA LD8FC LD46C LD854 LD8B7
LD47B L008A LC364 LC37B LC383 LECC9 LED06 LEB2B LEB6C
LEBAD LE826 LE85C L0171 LEA6A LEA77 LC7C6 L5B1A L5B18

Page 9 of 44

LC7C2 L5B1B LC7CA L4074 LD2FB L007E LD313 LC62E L0124
LC6BD LC614 LC611 LC6C2 L4022 LC955 LC963 L4012 L0830
L4013 L0831 LC994 L997F L0009 L9FAD L4EB6 L4EB7 L02C6
L02D0 L0887 L9FCD L0888 L50B5 L50B4 L9FCA L0038 L4E85
L9FD6 LA01C L0036 LA37A LA382 L086A L021D L45D0 LC8E0
L003D L029B L021F L0841 L0843 LC90B LC91F LC8A4 LC8AD
LAD76 LAD8B L46FF LCF3E LCF48 LCE78 LCE82 L9DE9 L9DEB
L0882 L9E16 L5064 L9E0F L9E01 L0884 L5065 L9E13 L9E51
L085C LA400 LA3DC LA3FD L086C LA3C6 L4EAF L01FB L402F
LD22B L01FA L402B L0041 LD213 LD22E LF10D L4E82 LCB18
L029C L4E83 LCB37 LCB4B LCB66 LCB4E L003E LDA82 LDAAA
LDA9E L024B L023C L023D LDEDA LDAD4 LE6E5 LE6DF LE6E8
L008E L015F LE6E2 L0023 LE748 LE781 LE77B LE784 L0160
LE77E L0024 LE7EA LED62 LED5E L016B LED32 L0028 LEDD3
LEDCF L016C LED81 LEA27 LEA23 L016F LEA12 LE9F4 L002A
LEAED LEAE5 L0173 LEAD3 LEAE9 LEDFE LEDFC L0179 LEE00
L001E LEE3F L002F LEE6C LEE6A L017A LEE6E L0030 LEEA5
LE0AD L0255 LE0A2 LE0AB L0259 L0279 LE0CB L024D L4E7B
LE082 L4E7C LF513 LF510 LF5B4 LF663 LF62E LF655 LF704
L302D L92A0 L4EAC L92E3 L014E L7D17 L0147 L7D22 L7D2D
L7D35 L7D36 L014D L7D45 L7D51 L7D6B L7D79 L7DC6 L00F6
L6925 L7DC4 L6927 L6926 L7DBF L00F5 L7E2D L5D04 L7E23
L7E2E LCC05 L7B6A L0393 L7B6D L9268 L9262 LA548 LA552
L01EC LA562 LA56C L400D LD083 L01DC LD11C L0070 LD15A
LD12E L01D1 LD1D5 LF2EA LF2E7 LF2CF LF2BF LCF65 LAF40
LB77C LB78B LAD5B LF7E3 L3FCC LF880 L3FEA L3FCE L3FDC
L3FF6 LF7B7 LF7CE LF7D0 L7873 L7626 L02F2 L78D4 L026F
L7629 L76D7 L7812 L0829 L7789 L4920 L77BF L77D5 L77F9
L084E L7801 L78A4 L081F L77BC L082A LEFB2 LEF47 L4008
L4006 L72E5 L730C L000F LEFC3 L0015 L7308 L733C L5B24
L0319 LEF1D L7346 L735A L7351 L4133 L0219 L001F L736D
L5B1E L0020 L7379 L5B21 L0021 L7385 L5B42 L0022 L7391
L5B52 L739D L5B58 L73A9 L5B5E L0025 L73B5 L5B78 L73C1
L5B72 L73CD L5B74 L73D9 L5B79 L0029 L73E5 L5B8B L73F1
L5B8F L73FD L5B9D L7409 L5B9F L7415 L5BA1 L002E L7421
L5BA2 L742D L5BA8 L7439 L5BAE L0031 L7445 L5BB8 L7457
L7467 L0032 L7472 L0033 L747A L0034 L7482 L7499 L01EA
L4950 L74CA L4951 L9341 L01F5 LB24D LB185 L01FF L01FD
L01FE L489B L01D8 L0193 L755E L4071 L750C L4072 L0078
L3FCA L0228 L3012 L0851 L48DD L026D L026B L0049 LEF2B
L4D8C LCD81 LCD98 LF1CA LF1D0 LC4F0 L5150 LAF07 LAEB7
L5152 LAEBA LAF10 LD517 LD519 LD549 LD527 LD547 LD4C3
LD7FB LD869 LD879 LD886 LD895 LD8B5 LD8C3 LD8CE LD984
LD934 LC3A5 L691B LC39F L306A LC3B9 L012F L306C LC7D6
LC7DC L4075 LD309 L4076 L007C L007B LD333 LD338 L007D
LD34D LD352 LC635 LC64A LC6D0 LC96D LC9C0 L4019 LC9AD
L0833 L9986 L9AA7 L0037 L9FDD LA05F LA0B4 LC916 L0844
L4140 LC8BB LAD8E LAE03 LAE08 LCF49 LCF53 L1815
 *** Warning: Branch Ref: 0x1815 is outside of Loaded Source File.
LCF64 L0395 L0396 LCEA0 LCE93 LCE9D L9E20 L9E70 L5090
L9E6D L5091 L5092 LA432 LA421 L02CC L4FBD L02CA L085E
LA3EC L027A L026A LD28D L4024 LD288 L4025 LD266 LD2A8
L4E80 L4E81 LCB75 LCB7F L3FDA LCB92 LCB95 LDA93 LDA74
LDAA2 LDAA7 LDEE1 LDFAB LDB00 L00F9 L0014 L5B12 LDAF2
LDB72 LDB18 L4E28 L0158 LDB29 L4E29 LE74C LE6FE L017B
LE749 LE7EE LE7AC LE796 L017E LE7A7 L017D LE7EB L00E5
LED5F L00AC LEDAA LEA24 LEE43 L0190 LEE40 LEEA9 LEEA6
LF153 L0265 LE0EE L025F L0260 LE14F LE136 L02EB L02EE
L02EF L491F L02ED L0222 LE237 LF58A LF57E LF52B LF536
LF6BA LF680 L036E LF69B LF695 LF6CB LF646 L0007 L0008
L92AF L7D76 L7D88 L7DDA L7E03 L6929 L6928 L7E01 L02A1
L7E73 L7E90 L4009 L3039 L7E71 LCC18 LCC15 L7B79 L94B3
LC307 L927C L9285 L9282 LA581 LA586 L01F2 LA5B7 L4E5A
L024C L4E5C LA5BC L4E5B LA5B2 L4E5D LA5C2 LD0AA LD09D
L01D7 LD0CA L489D L489C LD0C7 LD0D5 L489A LD0E2 L01DA
LD100 L01DD LD1CE LD139 LD141 L006D LD150 LD160 LD1CD
L01D2 LCF70 LCFAF LCF80 LCF86 LCF83 LCFAB LAF5C LAF62
LB106 LB12A LB291 LB2DD LB375 LF42B LF2EB LB78C LBCED
LBDF3 LBD4D LBE8F LF842 L3FD4 L3FD6 L3FD8 LF7F4 L76DD
L78E4 L78F8 L7634 L862B L76E5 L4D8E L76FA L4D8D L0067
L450C L783B L48D0 LF116 L783D L77A5 L7907 L77E8 L7874
L78B3 L78CB L78D3 LEF5F LEF56 LEF62 LEFC9 LEF22 L4EE8
L0885 L9355 L4EA6 L9387 L935E L93D4 L9361 LB26F LB1B5
LB199 L015B LB1A6 LB1B7 L015C LB1B2 L019B LB219 L756A
L756C L48F3 L48F4 LEF3A LEF40 LEF34 LCD8C LCD95 LCDA5
L5E8C LCE29 LF1DF LF1E6 L5D05 L5D06 L5154 L5153 LAEC7
LAECC LAEE3 L0063 LAF0A LD556 L5B2C LD567 LD564 L5D2D
LD81B LD82A LD852 LD98D LD99F LD9AF LD9B8 LD94C LD94F
LD94A L007A LD380 L406D LD37B L084C LD371 L4073 LD395
LD386 L0184 LC65E LC66D L6753 LC668 L6754 LC677 LC68F
L0126 LC6A1 L4011 LC977 L4010 LC988 L0834 LC9C8 LC9C3
L4016 LC9BA L9992 L99A2 L99AC L9FE3 L9FEC L088D LA07D
LA06C LA075 L02C8 L02D2 LA0BF LA1AE L3FE0 L0847 L0849
LADF3 L0845 LADB2 L084B LAE0D LADE4 L5119 LAE00 L511A
L0846 LCEAA LCEB4 L9E2A L5066 L9E3A L0039 L9EB2 L9E8D
L9ECF LA46E L5B02 LA44A L02CF L4FBE L02CD L085D LA3F6
L4EB1 L4028 LD2A3 L0232 L4026 LD27E L4027 L402A LD285
LCBB2 LCBD9 LDA8D LDEEB LDFAC LDF9F L023F LDB7A LDB2D
L4E2A L4E2C L4E2B L4E2E LDB77 L4E2F L4E2D LDB6D LE71A
LE72E LE715 L017C LE7C3 LEDD0 LF162 L0066 LE15D L494A
LE164 L0858 L4FB4 LE172 LE178 LE1F4 LE188 LE1FC LE250
LE241 LE24D LF59E L0368 LF530 LF562 LF54C LF55E LF559
LF6C0 LF6B0 LF6AB L92B7 L92C2 L92C9 L7E8A L0246 L02A0
L7EA7 L7ECA L0065 L7EB5 L413B L01E8 L7ED2 L7ECD LB3B5
L94BA L1803
 *** Warning: Branch Ref: 0x1803 is outside of Loaded Source File.
L94C4 LA4DD L94DC L94D3 L997E LA613 L0283 L020D LA5E0
L0225 LA616 LA5F1 LA657 LA655 L414D L0215 LA60E LD119
L01DF L01E1 LD172 L084F LD193 LD191 LD19A LD02A LCFF3
LCFDE LCFCD L4850 L4851 LCFE6 LCF94 LCF9F LD048 LB35E
L00F3 L0076 L3000 LAF6F L3002 LAF9B LAF96 LAFB5 L009A

Page 10 of 44

LB121 LB124 LE677 LEA7B LE4BA LB13B LB14E LB15D L00B1
L00B7 L00BC L00BE L00C0 LB2C9 LF0BD LB2DA L00E7 LB2FF
LB318 L5D16 LF23F LB2FA LB384 L014C LB38C LB38F LF464
LF43D L0045 LF47D L036A L51B1 LF493 L036C L012C L00F7
L008B L008C L012D LF36A LF39F LF35E LF339 LF343 LF35A
L0103 LF36C L03A1 LF376 L0111 LB794 LBACB LBCF5 LBD44
L0119 LBDFC L011B LBE03 L674C LBE1D L011F L6750 LBE1A
L6748 LBE2C LBE46 L0121 L6752 LBE43 LBE49 LBD59 L00AD
LBD68 LBD71 LBD77 LBE9E LBEA4 LBEA1 LC065 LF6D2 L4D8F
L7906 L763E L76A4 L7654 L7678 L864F L4967 L3FF2 L7851
L7865 L7870 LF121 LF125 L7921 L7919 L4E65 L7883 L789B
L78A3 L4EAB L4EA8 L93A0 L4EA9 L93A5 L93A7 L94A8 L937F
L50C4 L9377 L50BD L937C L93F2 L508E L93E4 L50B9 L93EF
L9410 L508F L9402 L50BA L940D L4E86 L9423 L02C2 L02C0
L9494 L943D L9442 L9447 LB213 LB1CD L00F1 LB1D8 L0094
LB201 LB223 L00AA L5B28 L0101 LB230 L5D1C LB23E L5D1B
LB24C L7583 LCDB2 L5E8D LCE39 LD57D LD589 LD959 LD967
LD390 L406E L406F L4070 LC6AB LC6B7 L4020 LC982 L401B
LC9D2 L401A LC95B L401C LC9E0 L401D LCA0A L401E LC9F9
L401F L4014 L0836 L4F7A L99C6 L4F7B L4F7C L99C3 L0859
L4F73 L4F79 L99D5 L99ED L4F7D L4F7F L99F2 L085B L9A20
L02D4 LA031 LA000 L50C2 LA0B1 LA09C L02D5 L50CD LA089
L0875 LA0C7 LA13F LA1B4 LA203 LAE21 LAE23 LAE31 LAE38
LAE42 LAE58 LCEC3 L46F4 LCECB LCED5 L9E33 L507E L9E46
L507F L9E4A L9ECC L9EA8 L5096 L9EA5 L9EBE L9EDB L0883
L9EE9 L9F78 LA4BC LA4B6 L50B6 L088E L50B7 LA4B1 LA457
L50CC LA465 LA460 LA46B L4029 LCBC7 L50D2 LCBD6 LCBF0
LCBED LCC04 LCC01 LDEF2 LE018 L023B LDFCF LE033 LDFC3
LDFD1 LE039 LDBAE L4E30 L0817 L4E35 LDBC4 L4E33 L4E34
L4E31 L4E32 LDBB3 LDBC7 LE727 LE733 LE7D1 LE7D9 LE1A6
L494F LE19D L494D L0293 LE1F9 LE1C2 LE1CF L491E LE1EF
L494E LE20C LE2D6 LE253 L0264 LF586 LF573 L92D9 L92DD
L92E1 L413A LB270 L7EE6 L7EEC LB3BE LB3C7 LA53B LA4F0
LA4D0 L94ED L94EA L997C LA671 LA620 L4136 LA66C L0234
L4144 LA66D LA6BB LD1B0 LD1C4 LD1C2 L01D4 L47DA LD038
LD047 LD059 LD063 L01D5 LD00E L01D3 LD020 LD02B L4853
LCFF6 LCFA7 L5B43 LB374 LB370 LAFAB LAFA6 LAFC5 LAFCE
LAFD1 LE6B3 LE6AF L015E LE6A3 LEAAD LEAA9 L0172 LEA9D
L5B35 LE4CB LB15F LB15B L5D0D LE576 LE5B7 LE38F LE96F
LB175 LE5F6 LEDD4 LE930 LE3CB LE4A4 LE3B1 LF0CA L015D
L016E LB316 L00C6 L00CD LB312 L00CF L00CB L5D18 L0102
LB33A LB344 L0814 L51B3 LF3BF LF3AC LF3E3 LF3E0 LF399
L031B L031D L031F L0321 L0323 L0325 L03A3 LB7A2 LB7A8
LB7B9 LB7E8 LB7E0 LB7D0 LBACE LB7F4 LB802 LB882 LBCFE
LBD00 L0143 LBD11 LBD29 LBD1B LBD21 L0129 LBE52 L012A
LBE5B LBE6C L0123 LBE74 LBE7A LBD7A LBD86 LBD8D LC0B7
LBEC9 L011D LBEC6 LBEC0 LC06A LBF79 LC083 L6921 L012B
LC08E LC0A8 L76BD L76D3 L4956 L7669 L7675 L768A L76A0
L4EAA L4EA7 L93C0 L93C5 L93C7 L94B2 L9323 L92F1 L94A7
L02C5 L02C3 L02C4 L9457 L945C L945E L5B22 LB221 L5B2A
LB205 L5B29 LB1FB L0199 L019A L0197 L0198 LCDBC LCDC5
LCDD1 LCDD6 LCE07 LCDFE LCE04 L0131 LD5C2 LD59A LD5B8
L5D26 L5D27 L5D25 LD5C0 L5D24 L0081 LD5D6 L018D LE322
LD5F4 LD5EC LD602 L4017 LCA14 L4018 LCA1D L0832 LCA2B
L4F7E L9A05 L9A00 L9A31 L4EB2 L085F L9A3C L9A8B L4F84
L9A50 L4F85 L9A56 L9A7F LA03A LA053 L50C1 L50C0 L50C3
L50C5 LA01F L9309 LA0A1 L50C6 L4EB3 LA0D5 LA0EC L4EB4
LA0FD LA114 L4EB5 LA135 LA176 LA1AC L4EE6 LA15B LA170
L4EE7 LA1A9 L0899 LA1A4 L4FB5 L4FB6 LA1EB LA1E3 L0876
LA22A L0877 LA226 L0878 LA21B L4F18 L4F17 LA227 LA238
LA23B LA35E LCEF5 LCF0B LCF15 LCF22 L0886 L508D L9ECB
L9EFE L5094 L9EFA L5095 L9F13 L9F18 L9F31 L0880 L4EAD
LDEFA LDF20 LDF05 LDF1B LDF87 L0237 LE042 LE045 LDFDC
LDBFA L5B01 LDBE2 L081C L4E36 L0223 LE21B LE321 LE264
LE2BC LB27D L5B26 LB28A LB28D L5B23 L48B3 L7EFD L029E
L48B1 L7F10 L48B2 L7F23 L91B6 L7F89 LAF17 L8695 L7F52
L7F7D L7F80 L860F LB3C8 LB3FB LB486 L0397 LA521 LA516
L0398 L94F4 L961A L4958 LA67F LA683 LA627 L4134 LA636
L0233 LA6D4 L083D LA6ED LA6F4 LAFB2 L0097 LAFDF LAFED
L0095 LB001 LB00B LB01C L5D23 L019C LB026 LB02E LB037
LB054 L009B LB048 L009D L0077 LB064 LB06E LB07D LB096
LB099 LE6B0 LEAAA LE5B6 LE5B2 LE5A5 LE5F5 LE5F1 LE5E5
L5B34 L5B2B LE3A9 LE3AD LE9DB LE9D7 LE984 LE98E L5B87
LE992 LE676 LE672 LE61E LE96E LE96A L016D LE954 LE96B
LE3E5 L5B3A L5B31 LE3E9 LE4B5 L5B2F LE3C3 LE3C7 L0100
LF3F2 LF3FE LF401 LEFD0 LBADB LBAE7 L6001 LB870 L6004
LB82B LB822 LBC0C LB88E LBCEC LBB86 LB8BE LB8A6 LF141
LB8D5 LB8D9 LB8E8 LB8E9 LBD3C LBD3E LBD2F LBE7D LBE85
LBE8B LBD99 LBDA1 LBDB7 LBDB4 LBDF2 LBDCC LBEE5 LBEFF
L691F LBEF6 LBF0B LBF84 LBF95 L691D LC0A3 L691E LC0AB
LC0B4 L50CA L92FE L9305 L946E L9473 L9478 L5E8F LCE20
LCE26 LE32A LE33B LD604 LD5FF L4015 LCA2F LCA32 L9A15
L4F80 L9A1F L4F81 L0857 L9AA1 L9AA4 L9333 L9A6B L0860
L9A66 L0861 L9A7B L4F87 L9A82 L4F86 L50C7 LA029 L50C8
L931F L50CB L50C9 L4EE4 LA18B LA1A0 L4EE5 L0893 LA1FA
LA249 LA250 L0866 LA367 L0867 L9F2E L9F48 L5097 L9F45
L9F60 L9F58 L507D L9F7B LDF24 LDF40 LDF44 L4E26 LDF5B
LDF84 LDF76 LDF98 LDF9B LDFE8 LE01B LDC16 LDC10 L02AB
L4E41 LDC24 LDC27 LDD14 L4E39 LDBEF LE224 L48C8 LE272
LE275 LE2DE L02BC L91BF L02BD L91D5 L91D8 L02B8 L02BA
L920E L91FD L920A L9221 L7F95 L85D8 LAF3C LAF3F L5181
L5183 L4D8B L86C4 L866E L86BA L86DA L86F5 L86F2 L861B
L8720 LD3CA L862A L5D1D LB3F4 L5D1F L5D21 LB3FA L00FA
L5D0C L01C9 L01CA L01CD L01CB L01CE L5D0E LB426 LB424
LB40D L00D5 LB48D LB4DD LB4E8 LB4A5 LB4AC LB4B6 L0181
L00D4 L00D9 L00DA LB4D3 L018B LB552 L00D6 LB504 LB549
LA532 L4EAE L9524 L9532 L9551 L4EB0 L086D L0879 L087A
L0864 L086E L95DA L95D5 L95EB L962A L9654 L9632 LA694
LA6B0 LA6AD L4143 LA644 L02B1 L50DA LA721 L02AF L02B0
LA72F LA731 LA742 LA74D L0837 LA75B LA76B LA77A L0209
LA77D LA78E LA79F LA7AF L5D02 LB0B2 LB0D0 LB0D2 L5B1D

Page 11 of 44

LE5B3 LE5F2 L5B85 LE9AF L5B45 L5B46 L5B47 L5B48 LE66A
LF411 LF414 LF01D LEFD7 L008D LBB44 LBAFD LBB02 L0145
LBB41 LBC14 LBC1C LBCE8 LBBCA LBBFD LBBD6 LBBA1 L5FC9
L018C LF148 LF14E LF155 LB8F8 LB8FC LB8FD LBE8E L674A
LBDED L674E LBDEA LBF1D L6920 LBF14 LBFAE L6924 LBFE6
LBFD2 LBFC6 LBFDA L02CE L9488 L948D L948F LCA3F L4F82
L4F83 L0868 L3008 L933F L9340 L9A73 LA273 L4FBC LA291
LA269 LA2B1 L9F6D LDFF7 LE036 LDC35 LDD0D LDD8A LDD7E
L4E4F LDD41 L024A L4E55 LDD3B LDD7B L4E3A LE2AA L48C2
LE293 L48C5 LE2CB LE2A4 LE31E L48CC L48C9 L400E LE308
L48CB L48CA L48CD L9218 L9205 L922E L9236 L9244 L7FFA
L01ED L48B6 L7FAE L48B5 L48B7 L7FBB L7FFD L48B8 L7FD4
L7FE6 L7FF4 L8001 L85EB L85FA L8681 L8689 L8694 L86F6
L8627 L8A01 L8745 L872E L8734 L873F L493F L8756 L8758
L876E L4940 L0290 L4942 L028F L8789 LD3DD L0811 LD3D8
LD410 LB43D LB458 L01D0 LB472 LB47A LB524 LB51E LB52D
L95E3 L95E6 L0862 L0871 L087D L4E87 L9614 L960E L9611
L9920 L9684 L4F19 L4F1B L4F1A L4F1F L9674 L4F20 L4F21
L4F1C L4F1E L4F1D L4F22 L4F23 L9690 L9696 LA6B7 LA7AA
L083F LA7B9 L020F LA7D6 L01E4 LA7EC LA7FD L021B LA810
LA81A LA830 L4141 L413D L021C LA849 L021E L022E L413F
LA8A3 LA88D LA882 L5D13 L5D12 LE34C LB0FB LB0F8 L5B89
L5B8C LE9D8 LE673 LF42A LF421 LF024 L0144 LBB1D LBB23
LBB36 LBB33 LBC5A LBC33 L0139 L0138 L013A L5FCF L5FD0
L018E L018F LBBE9 LBBF2 LBBFB LBC0B LBBB8 L5FCA L5FCB
L5FCC LBBD0 LB905 LB917 LD96D LB927 LB929 L013E LB942
L00E2 L00E9 L5FFF LB94B L5FFE LB988 L6923 LBF76 LBF35
LC0B8 L0110 LBF53 LBF4E L0185 L0125 LBF62 LBF6A L00EB
LBF71 L00ED LC046 LBFF3 LC01C LC00A L6747 LC025 L6922
LBFE0 L9A7E L4FBB LA287 LA2A3 LA29E LA2CF LA2C3 LA2BE
LE010 L023A LDC3C LDCFD LDDC1 L4E57 LDDA0 L4E58 LDDC6
L4E56 L4E59 LDDCB LDD59 L0248 L4E53 LDD56 LDD44 L48C6
LE2D9 L0801 L48C1 LE29F L48C4 L48DF L0261 L804F L0200
L8014 L801D L48B9 L8022 L48BB L803D L48BA L804A L8053
L4969 L8609 L860C L8708 L871F L8F97 L8A1B L8A50 L48C7
L8A35 L8A28 L8A32 L8A3B L8A52 L8A47 L0289 L0287 L8A7B
L8790 L4E4E L028E L493D L87A2 L87BB L87AF L87B7 L01F7
L87BD LD405 L080F L4132 LD402 LB543 LB53B LB553 LB5FE
LEBB1 L95EE L0889 L9938 L9963 L994F L50BE L96C5 L970F
L4F05 L4F06 L96B4 L4F07 L96BC L4F09 L4F08 L96FF L0217
L413C L413E L0154 L0220 LA8F1 L083C LA90C LA914 LA895
L4854 LE364 LE35F LE38E LBCCB LBC5C LBBC5 L5FCD L5FCE
LD97B LD982 LB954 LB976 L0141 LB9AB L5FE1 LB9A0 LBA76
LC054 LC10A L0188 LC0CC L0186 LC0F8 LC107 LC118 LC05C
LC05F LC02B LC034 LC03F LC017 LA2AC LA2E0 LA2EB LA2CC
LDC39 L0242 LDC52 LDC4B LDC4F L4E42 L0243 L0244 LDE01
L4E66 LDDFB L024F L4E69 LDDF8 L4E52 LDD86 L4E50 L0247
L4E51 LDD74 LDD87 L48C3 L0262 L8069 L8075 L808B L48CE
L8098 L80B8 L8712 L8FA6 L8FAC L8A6B L48E2 L8A71 L48CF
L8AEE L8AFC L48D8 L8AE9 L48D4 L8AC9 L8AB0 L8AC1 L0294
L48D5 L8AD9 L8B05 L87CA L0298 L87D0 LB562 LB574 LB57C
LB586 LB588 LB591 LB597 LB59F LB5A1 LB5AB LB5AD LB5B3
LB5BF LE414 LB5CE LB5DB LB5E3 LB5EB LB5F1 LB5FD L0114
LB64D LB631 LB64C LEC13 LEBD6 L088B L50BF L96E4 L96F8
L971A L9781 L415D LA91D LA977 LE37B LBCD8 LBC84 LBC6E
LBC7E LBC8E LBC89 L013F LB987 L5FE2 LB9BA LB9BF LB9CA
LB9C3 L5FE3 LB9F7 L013D LBA91 LBA8E L601E LBA9F LBAA5
LBAAC LBABF LE424 L0112 LBAC8 LA2FF LA31F LA313 LA30D
LA30E L4E47 LDC8E L4E43 L4E44 L4E45 L4E46 LDC7A L4E4A
L4E4D LDD03 LDC90 L4E6E LDE39 LDE1E L4E70 LDE41 LDE44
LDE30 LDD83 L80A0 L4905 L80B5 L0254 L4D8A L025B L0257
L80ED L80F0 L4D88 L8112 L0271 L0275 L8138 L813B L81D1
L817F L8156 L514B L8153 L084D L514C L514F L514D L8170
L514E L8179 L0075 L50CE L8FBB L02B6 L8FC7 L1809
 *** Warning: Branch Ref: 0x1809 is outside of Loaded Source File.
L8FA8 L50D0 L901B L8FFA L8FDA L8FDD L02B7 L9016 L50D7
L8FF2 L02A9 L48D6 L8AF9 L8B3F L8B13 L4952 L48DA L48DB
L8B39 L082C L48DC L8B31 L48E0 L8AD3 L48EE L8AE4 L8B02
L029F L87D3 L87E9 L87E6 L885C LE420 LB665 L00D7 L5FC5
LB67D LB691 LB69B LB74E LEC4E LEBE1 LEBE5 LEC15 L0132
LEC4F LEC4B L4F12 L4F13 L96F0 L4F14 L4F16 L4F15 L973C
L9730 L9756 L088F L97A5 L932A L97A2 L4F24 L4F25 L97AF
L97B3 L4159 L415A LA932 L415B LA939 LA9CC LBCAE LBC9A
LB99D LBA21 LBA7C LB9E5 L5FDD L5FE4 L013C LBA03 LBA05
LBA18 L0142 LBA2E LBA3D LBA5D LBA4D L5FDE LBA54 LE430
LA332 LA32D LA319 LA340 LDCBB LDC9C L48ED L4E48 LDCAC
LDCB6 L4E6F LDE28 LDE3C LDE4E L4E73 LDE96 LDE6F L4E72
LDE6C L4E74 LDE9E LDE74 L81DB L818A L81E9 L8198 L81A0
L81A2 L81C5 L495C L028D L495B L81EC L8300 L9039 L9033
L9042 L90F3 L9004 L9007 L50D1 L901E L4909 L8B49 L4E71
L8B4D L4955 L8B6B L4957 L8B64 L48E1 L8AFF L87F1 L885F
L8859 L880D L8873 L0282 L029D L89F4 L601D LB6AC LB6CE
LEC30 L0133 LEC7E L974C L0895 L0891 L977E L977B L9775
L9331 L9332 L97BC L0869 L97C6 L97CA L415C LA954 L415F
L46E8 LAA40 L46E9 LA9EC L0838 LBCC9 L5FDF L5FE5 L0140
LBA71 L5FE0 LBA63 LA33B LA352 LA34D L0245 LDCC5 L4E4C
LDCE5 L4E4B LDCD3 LDEA1 L4E76 L4E78 LDE89 L4E79 LDEB6
LDEB3 L0856 L4E7A LDED7 L087F L81FE L48BC L8218 L8207
L8213 L4938 L0268 L0267 L4939 L8315 L81DF L83D0 L905A
L9064 L9067 L02AD L50D3 L9082 L9085 L02B3 L02B5 L90AF
L50D4 L90A2 L90A5 L90DB L90C2 L50D8 L90C8 L9176 L9120
L9144 L9105 L916E L8B75 L8D50 L8818 L881C L8825 L8889
L0291 L8883 L88A1 L89FB L0292 LB6BA L00DB L00D8 LB6FA
LB6E9 LB6F8 L0134 L0897 L97D3 L97E1 L97ED L4F76 L97FA
L4F77 L9807 L4F78 L9819 L4F75 L9820 L9829 LA95D LA967
LAA69 L4151 LAA5C L022B LAAA3 L083A LAA18 LAA23 L083B
LAA35 LAA3D LA35B LDCEB LDCE0 L4E49 L8222 L822F L8247
L48BD L821A L83EE L48D1 L48D2 L48D3 L83F4 L006C L8425
L90E6 L90F0 L917A L90D5 L90D8 L919A L918D L912A L9148
L50DC L50DB L913B L50DD L9177 L50D9 L4917 L8B8D L4918
L0286 L8B9C L026E L8D71 L081A L8D68 L0818 L48EC L8DAE

Page 12 of 44

L8D96 L8DA0 L8DA6 L8E1D L8E56 L8834 L494B L889B L494C
L02A3 L88F6 L4943 L88C9 L88DB L0285 L88E6 L8893 LB6C1
LB6C7 LB701 LB70B L4F74 L9AA8 L9D03 L9D89 L9840 L984E
L9855 LA973 LA97D LA980 LAAA6 L414E L4150 LAA7B L414F
LAA8D LAA90 LAAAD L1812
 *** Warning: Branch Ref: 0x1812 is outside of Loaded Source File.
LAAE0 LAADD L4160 LAACD L4163 LAAD2 L8236 L48C0 L081D
L8258 L8255 L8402 L4510 L840E L8416 L842E L8449 L844F
L8473 L847F L91B5 L91B2 L50CF L9197 L9153 L9161 L9164
L02AA L9173 L4919 L0203 L0204 L0205 L8BCA L490D L8BD2
L8CDF L8E1F L8DCE L48EA L8DCA L8DD9 L8E04 L48EB L8E00
L8DFE L8E1A L8E18 L8E5C L48F2 L8E75 L8E70 L48F0 L8E73
L4901 L4902 L4903 L4904 L8908 L891F L8932 L894C L02A4
L8962 L89B0 L493E L8970 L88F2 LB713 LB72A LB733 L0113
L9AB2 L9ABA L9AD2 L9ADD L9D13 L9D53 L9D95 L9D9F L9863
L0870 L986A LA995 LA9A2 LA9A8 L0211 L4145 LAAF9 LAB47
LAB24 L0231 LAB17 L4164 L4161 L493A L8262 L8330 L450F
L8422 L847B L848E L84A0 L859F L8C34 L8BDD L490A L8BE8
L0299 L490F L8D0C L028C L8D15 L48E4 L8E34 L48E5 L48E6
L8E41 L48E7 L48E8 L48E9 L8ED2 L8E99 L8EA2 L8ECC L48EF
L8E7B L89C5 L4944 L89BD L89CC L897B L897C L4EE9 L9AE8
L4EEA L9B10 L9D1A L9D20 L9D26 L4FBF L9D3D L9D4B L9D5E
L9D72 L9D9D L9DDF L9DB7 L9DC2 L9DC8 L9874 L9877 L9891
L988A L450A LA9C0 L450B LA9BC LA9C3 LAB60 LAB59 LAB63
L46D5 L46D6 L46D7 L46D8 L82CA L8284 L82E0 L8341 L8349
L83CA L84DE L84AD L84D3 L85AE L029A L4913 L8CA4 L8C5A
L490E L4914 L490B L8C7C L8C88 L491B L8C9D L8CA3 L4912
L8CC0 L4915 L4916 L491A L8D1B L490C L8C09 L8C31 L8C17
L8D36 L8D49 L0399 L0263 L8EFD L48BE L48BF L8F00 L026C
L8EC9 L8EBB L48FF L48FD L89E9 L4908 L8998 L4907 L89AD
L8995 L9AFE L9B3B L9B2A L9B41 L9CE9 L4FC0 L9D47 L4FC1
L9D56 L9D67 L9DBD L5030 L9DC5 L5031 L9DD5 L9DD8 L9899
L509F L98B5 L509E L98B8 L98C6 LAB91 L45CE LAB72 L45CF
LABA2 LAB7B L4E6D L4935 L82DA L4937 L8325 L828F L493B
L82B8 L493C L82AA L4933 L82E3 L4934 L82C6 L4930 L82E8
L082B L8357 L8362 L492C L836B L492D L837B L8390 L839D
L839F L492F L83B4 L492E L84E9 L854C L84F2 L8507 L8518
L0281 L8535 L027F L027D L0280 L027C L8559 L84B7 L4922
L84DC L496A L84D9 L8555 L85C9 L85D2 L4963 L4965 L8C1E
L8CD6
 *** Warning: Branch Ref: 0x1800 is outside of Loaded Source File.
L8F4B L0297 L8F1E L8F89 L0296 L8F2C L48E3 L8F3D L8F4E
L8F57 L4900 L48FE L89A3 L4906 L9B09 L9B50 L9B82 L9B70
L0873 L9D70 L98BE L98C0 L98D6 L9913 LABB2 L414B LABD5
LABD2 LAB87 LAB89 L0269 L82FB L4931 L82F6 L4932 L831E
L4928 L8576 L492A L8599 L858C L4910 L8C3A L4911 L8C36
L491C L8CF0 L8F82 L8F70 L48F1 L8F6B L8F7D L504B L504C
L9B7C L9CBD L9B8D L9BA1 L98FD L50A2 L98EE L98F2 L50A0
LABC9 L4149 LABF9 LABE9 LABF4 L039A L8586 L8CFB L8C39
L8F7A L9CDC L9CCC L9CD3 L9CD9 L9B96 L9BB2 L9BBC L990B
L4147 L0213 LAC0B LAC1D LAC1B LAC24 L180F
 *** Warning: Branch Ref: 0x180F is outside of Loaded Source File.
L0224 LAC3F LAC5D L3FE8 L3FE6 LACEC LACCB LACD7 LACE0
LACD1 LACB9 L4E67 LACC8 L8D0B L9CE7 L9B9F L9C31 L50B8
L9BF9 L9BDC L50BC L9BF6 LACFC LAD5E L3FEC L3FE4 L4E68
LACCE L9C49 L9C3E L9C44 L9C5F L9C0A L9C23 L9C1E L9C62
L9C56 L9C5C L9C2E L9C6D L9C94 L9C81 L9C8F L50BB L9CBC

Pass 2 - Disassembling to Output File...

 *** Warning: Branch Ref: 0x1800 is outside of Loaded Source File.

 *** Warning: Branch Ref: 0x1809 is outside of Loaded Source File.

 *** Warning: Branch Ref: 0x1803 is outside of Loaded Source File.

 *** Warning: Branch Ref: 0x1812 is outside of Loaded Source File.

 *** Warning: Branch Ref: 0x180F is outside of Loaded Source File.

 *** Warning: Branch Ref: 0x1815 is outside of Loaded Source File.

 *** Warning: Branch Ref: 0x1806 is outside of Loaded Source File.

 *** Warning: Branch Ref: 0x180C is outside of Loaded Source File.

Disassembly Complete

Due to copyright issues, the source binary file and resulting disassembly file cannot be included in the
distribution of M6811DIS.

By examining this output, we can better ill ustrate the order of operation within the disassembler. First, we
see that after initializing itself, the disassembler reads the Control File. From the Control File, the
disassembler sets the load address to 0x4000, sets the input filename to “AV94BNBH.BIN” , sets the output
filename to “AV94BNBH.DIS” , sets 21 user-specified entry points and 16 user-specified labels, and
enables the outputting of address information in the output file. Notice that the indirect vectors specified in
the Control File isn’ t processed until l ater – this is because the source file has to be loaded before the
indirects can be resolved.

Page 13 of 44

After reading the Control File, the disassembler reads the M6811DIS.OP opcodes file – there are 308
unique opcode definitions for the HC11. Then after reading the opcodes, it loads the source file. Notice
that this particular file is 0xC000 bytes or 48K. Since it started at 0x4000, the loaded code consumes the
upper 48K of the HC11’s 64K program-space. Typically you should never have a file that occupies the
entire 64K address-space of the HC11. This is because part of that space is really RAM space and HC11
Register Space. RAM and Register space (and anything else that isn’ t part of the program and program
data) should not be included, simply because the information in those areas is not valid.

This version of the disassembler allows for only one source binary to be loaded during a run and
consequently has only one single load address that can be specified. If more than one file needs to be
loaded, they must be externally concatenated into a single unit. Future versions of the disassembler will
allow for multiple source files to be loaded, each at their own unique starting address, and will allow for file
formats other than binary to be used. In any case, overlaps in the files’ are not permitted.

After loading the source file, the disassembler can now resolve the indirects specified in the Control File. It
reads the address stored at each specified indirect location and adds the found address to the internal entry
table. Note that this version of the disassembler assumes that all i ndirect values specified are indirect
addresses of (or pointers to) code entry points – such as an interrupt table entry. Future versions of the
disassembler will also allow the specifying of indirect addresses for pointers that point to data instead of
code.

Now that everything has been loaded, the disassembler will begin pass 1 through the source that it has
loaded into memory. During this pass the disassembler will t ag all l oaded memory locations as being either
data or code. And, each time it encounters a new label, the new label is added to the label table and
outputted to stdout. This is why the labels appear seemingly in random order.

Notice the warning messages like “*** Warning: Branch Ref: 0x1803 is outside of Loaded Source File.” .
These indicate that a branch or jump instruction specified an address that was outside of the memory area
loaded from the source file. This is typical in applications that have more than one source for the program
code. It can result from any of the following “system” reasons:

• The code is split i nto multiple ROM chips
• The code is simply broken into multiple parts
• A second processor with common dual-port memory space
• Dynamic code that is loaded into RAM either by this program or some other bootstrap
• One of many other possible “system” reasons

It can, however, from any of the following “user” reasons:

• An incorrect load address for the binary image was specified
• An incorrect entry point was specified
• The binary could be corrupt or incorrect
• One of many other possible “user” reasons

If you see errors of this nature, check your source file. Make sure it is the correct length and that you have
specified the load address correctly. Make sure that you have all the pieces of the binary and that they are
concatenated and/or padded correctly.

In this example, we can ascertain that in this particular case, it is the result of a “hardware” reason. We
notice that the 8 different “outside” addresses are spaced every 3 bytes apart. Peculiarly enough, the jump
instructions in the HC11 happen to also be 3 bytes long. After double checking our original ROM and after
further study of the device under test, we find that these “outside” addresses create a dynamic jump-table
and that these addresses appear in a secondary memory device – possibly EEPROM or a dual-port memory
interfacing this HC11 with a coprocessor. By reading the HC11 memory space in-circuit, we can actually

Page 14 of 44

see this dynamic jump table and how it is created. But, the knowledge, instruction, and methodology on
how to do in-circuit testing and other more in-depth reverse engineering techniques are outside the scope of
this document.

After the disassembler has completely exhausted all entry point table values, the disassembler then starts
pass two. Pass two is simply an iteration through the entire loaded memory space, while outputting the
disassembly to the output file. After the iteration through the source is complete, the disassembly process is
finished. The resulting assembly file, when reassembled according to the section Reassembling a
Disassembly, will result in a binary file that is guaranteed to be byte-for-byte identical to the original binary
source file. This eliminates many of the headaches and hard work required by most disassemblers that
aren’ t targeted for a specific assembler – on those disassemblers, it is often necessary to completely rework
the output file before it will even assemble, much less assemble back into the original binary. That is what
makes this disassembler so appealing to the reverse-engineer, who often needs to disassemble a program,
add or change some functionality, and then reassemble and be able to do so without reworking the entire
source by hand.

Page 15 of 44

Control Files
Control files are the means for telli ng the disassembler how to load, interpret, and disassemble the desired
binary source file(s). The reason there is a Control File is that the disassembler needs to know more than
just the name of the original file – so much more that it would be cumbersome to have to repeatedly specify
these options on the command line when running the disassembler, not to mention you'd run out of
command line space!

A Control File is nothing more than a simple text file that you create using your favorite text editor. This
text file is a listing of commands with associated arguments for the disassembler. Each command must be
listed on a separate line and all numeric arguments must be entered as hexadecimal values with no hex-
denoting prefix or suff ix. That is, you do not put a ‘0x’ or ‘$’ or any other symbol before or after to
indicate a hexadecimal value. Future versions of the disassembler will allow for other number bases, but on
this version all values are assumed to be in hexadecimal.

Comments can be placed in the command file by using a semicolon (‘ ;’). Any text on a line following the
‘ ;’ will be ignored by the disassembler. Blank lines are also ignored.

The order of the commands in the Control File does not matter on this version, as none of the commands
have any interdependencies. However, on future versions, there may be some command orderings that will
matter. For example, on future versions where the number-base can change, it would be necessary to
specify a new default base before using that base. But on this version, order makes no difference.

The commands are not case sensitive, as everything is internally converted to uppercase.

On this version, all commands must be placed into one single Control File. Future versions will allow for
combining of Control Files and more extensive Control File parsing options.

A bare minimum Control File can consist of only 2 lines – an “ input” statement and an “output” statement,
as you’ ll see from analyzing the example and command descriptions below. The default load address for
the source binary file is 0x0000 if it isn’ t explicitly specified. And, if no “entry” or “ indirect” statements
are specified to give entry points, then the file load address will be used as an entry point. However, you
should note that the load address is NOT assumed to be an entry point if any other entry point (either direct
or indirect) is used. If the load address is a correct entry point and you have other entry points and/or
indirects specified, you must include an additional “entry” command to add the load address to the list of
entry points.

All of the Control File commands fall i nto one of three categories: 1) Switch Commands, 2) Value
Commands, and 3) List Entry Commands. Each Switch Command switches a yes/no option in the
disassembler. This version supports the following Switch Commands: ASCII , ADDRESSES, and
OPCODES. The Value Commands allow you to specify a value for a disassembler option. This version
supports the following Value Commands: INPUT, OUTPUT, and LOAD. The List Entry Commands allow
you to add an entry to one of the disassembler’s internal li sts, such as the entry point table, the label table,
or the indirects table. This version supports the following List Entry Commands: LABEL, INDIRECT, and
ENTRY. Each of the supported commands are described in detail i n the following sections of this
document.

Page 16 of 44

 Example Control File
Below is the Control File that was used in an actual disassembly/reverse-engineering effort. This Control
File is the one that was used to create the previously discussed screen output in the Step-by-Step Walk-
Through section:

;
; M6811DIS Control File for:
;
; '94 Astro Van computer code: BNBH
;

input AV94BNBH.BIN
output AV94BNBH.DIS

load 4000

addresses
ascii

label ffd6 scivect
label ffd8 spivect
label ffda paievect
label ffdc paovect
label ffde tovfvect
label ffe0 ti4o5vect
label ffe2 to4vect
label ffe4 to3vect
label ffe6 to2vect
label ffe8 to1vect
label ffea ti3vect
label ffec ti2vect
label ffee ti1vect
label fff0 rtivect
label fff2 irqvect
label fff4 xirqvect
label fff6 swivect
label fff8 ilopvect
label fffa copvect
label fffc cmonvect
label fffe rstvect

indirect ffd6 scirtn
indirect ffd8 spirtn
indirect ffda paiertn
indirect ffdc paortn
indirect ffde tovfrtn
indirect ffe0 ti4o5rtn
indirect ffe2 to4rtn
indirect ffe4 to3rtn
indirect ffe6 to2rtn
indirect ffe8 to1rtn
indirect ffea ti3rtn
indirect ffec ti2rtn
indirect ffee ti1rtn
indirect fff0 rtirtn
indirect fff2 irqrtn
indirect fff4 xirqrtn
indirect fff6 swirtn
indirect fff8 iloprtn
indirect fffa coprtn
indirect fffc cmonrtn
indirect fffe reset

entry 7C0B
entry 7C12
entry 7C1C
entry 7C22
entry 7C35
entry 7C6B
entry 7C7C
entry 7C83
entry 7C9C
entry 7CA0
entry 7CAA
entry 7CAE
entry 7CBE
entry 7CC2
entry 7CCC
entry 7CDD

This is the same example Control File that is provided in soft form with the distribution of this disassembler
and was used to disassemble the code from a 1994 4.3L CPI Vortec Astro Van vehicle computer, which
happens to use a Motorola 68HC11 variant. Let’s analyze this Control File piece by piece.

First off , we define the input and output files we will be using. I typically use the convention of .bin for all
source binary format files and .dis for all disassembler output files. After I have a chance to go through the
disassembled output, clean it up, and comment it, I’ ll rename the “clean” version with a .asm extension.

Page 17 of 44

You may, however, adopt a different extension standard, as the disassembler doesn’ t care what you name
the input and output files as long as they are properly specified in the Control File. It will complain if you
don’ t specify these.

We then tell the disassembler that the load address for this file is 0x4000. Even though the ROM is a 27512
or 64K byte ROM, only the upper 48K is used – with the lower 16K being all 0xFF bytes. This makes
sense considering the RAM and CPU Registers exists in the lower memory. So after reading the entire 64K
ROM, the binary image was trimmed down to 48K by using a hex editor (a decent hex editor for Windows
is written by BreakPoint Software and can be found at www.bpsoft.com). As mentioned earlier, it is not
good to include parts in the binary source image that isn’ t actually part of the code or data being
disassembled – in this case the 0xFF padding.

In our output, we’d like for the disassembler to include the actual memory address for each instruction in
the disassembly output, so we include the “addresses” switch to enable that. And we’d also like for it to
attempt to decode any areas that doesn’ t appear to be code as possibly being ASCII data and to output them
as strings if they exist, so we’ ll i nclude the “ascii ” switch.

Since we know that this is an HC11 processor and that the ROM exists in the upper memory, it only makes
sense that the image includes the interrupt vector table. So we’ ll i nclude a list of the basic HC11 interrupt
vectors. (Because of their complexity and variance from one HC11 family to another, the details and
specifics of these interrupts are not included in this document, but are available in the aforementioned HC11
reference manuals.) We first define a name for each of the vector locations themselves. This is optional,
but allows us, when looking at a disassembly output, to easily tell which vector is which. We then list each
vector as being an indirect – which will cause the disassembler to add the address located at the vector
address to the list of entry points. It also allows us to specify a label name for the routine that is being
indirectly referenced. So, we’ ll give them names like “reset” and “swirtn” , things that will be meaningful
when we later examine the disassembly.

If this were the first time we’ve encountered this binary, that is about all that we can enter into the Control
File, as we won’ t yet know of any additional entry points. So we run the disassembler with a Control File
that doesn’ t have the “entry” commands listed. In a quick look over the resulting output, we’ ll find several
jump tables and code that get called indirectly during execution. Typically, these are done by loading one
of the index registers with a lookup table address and doing a “ jsr” relative to the index register value. So,
look for “Undetermined Branch Address” comments in the disassembler output. Anytime the disassembler
encounters a jump it cannot trace, it will comment the instruction as such. This will t ypically be a clue to
you that you need to look for a branch table or similar, add “entry” values or additional “ indirect” values to
the Control File, and run the disassembler again. That is what was done here and is where the addresses
came from that you see in the “entry” commands. Most of these were actually indirects, instead of plain
entries, but I chose to use the “entry” command so you can see additional control file commands in-use.

The only Control File command supported in this version of the disassembler that isn’ t ill ustrated in this
example is the “opcodes” switch. It works in the same way that “addresses” and “ascii ” does, except that it
causes the disassembler to output the actual opcode bytes for each disassembled instruction along with the
normal disassembly.

Page 18 of 44

 Control File Commands

 Switch Commands

ADDRESSES
Format: addresses

The “addresses” switch instructs the disassembler to output the address of the start of each instruction in
front of the actual disassembled instruction in the output line. Here is an output example with “addresses”
turned on:

EBAC LEBAC: clra
EBAD LEBAD: st aa L0177
EBB0 LEBB0: rts
EBB1 LEBB1: brset *L003B,#0x04,LEC13
EBB5 ldx #0x5B00
EBB8 brclr 0x08,x,#0x04,LEC13
EBBC brset *L0090,#0x40,LEBD6
EBC0 bset *L0090,#0x40
EBC3 brclr *L001E,#0x04,LEC13
EBC7 ldab *L0031
EBC9 cmpb 0xB8,x
EBCB bcc LEC13

Having a copy of the output with the addresses on each line is very useful when hunting down references,
finding data labels, etc. However, having the addresses present prevents the code from directly assembling.
Since not all editors allow you to do block deletes and easily delete the addresses, the switch is provided so
that you can enable/disable address generation. This way, you can turn them off and create a file that is
compatible with direct re-assembly, or turn them on and create a file that is easier to sort through when
deciphering and commenting the resulting disassembled code.

The default mode if “addresses” is not specified is ADDRESSES OFF.

If “addresses” was not specified in the control file, the above code example would have appeared as
follows:

LEBAC: clra
LEBAD: staa L0177
LEBB0: rts
LEBB1: brset *L003B,#0x04,LEC13

ldx #0x5B00
brclr 0x08,x,#0x04,LEC13
brset *L0090,#0x40,LEBD6
bset *L0090,#0x40
brclr *L001E,#0x04,LEC13
ldab *L0031
cmpb 0xB8,x
bcc LEC13

Page 19 of 44

ASCII
Format: ascii

The “ascii ” switch causes the disassembler to look at the data areas when creating the output file and to try
and group adjacent bytes if they are ASCII printable characters. Here is an output example with “ascii ”
turned on:

; 432A: 59,55,52,4E,4E,4D,4C,4B
; 4332: 47,44,40,3B,52,63,66,61
; 433A: 5F,5B,56,52,4F,4E,4E,4D
; 4342: 4B,47,44,42,3E,52,63,66
; 434A: 5F,55,52,4F,4E,4D,4C,4B

.ascii 'YURNNMLKGD@;Rcfa_[VRONNMKGDB>Rcf_URONMLK'

Note that the disassembler, in addition to outputting the ASCII equivalent of the bytes, will also output the
byte values themselves. This is useful in case the data really isn’ t text, as in the case above. And,
sometimes there will be real text proceeded or followed by data that just happens to be in the printable
ASCII range. Depending on whether your file has more printable text or not will determine if you will want
to run the disassembler with “ascii ” on or off . If it has a lot of printable text, running with it on will save a
lot of typing in your “cleaned-up” version of the disassembly. But if there isn’ t very much printable text,
running with it off will keep you from having to convert those misinterpreted areas back to bytes. I suggest
first running with it on and see what ASCII strings it produces and then decide from there.

The default mode if “ascii ” is not specified is ASCII OFF.

If “ascii ” had not been specified on the above, the output would have appeared as follows:

.byte 0x59,0x55,0x52,0x4E,0x4E,0x4D,0x4C,0x4B

.byte 0x47,0x44,0x40,0x3B,0x52,0x63,0x66,0x61

.byte 0x5F,0x5B,0x56,0x52,0x4F,0x4E,0x4E,0x4D

.byte 0x4B,0x47,0x44,0x42,0x3E,0x52,0x63,0x66

.byte 0x5F,0x55,0x52,0x4F,0x4E,0x4D,0x4C,0x4B

Note that regardless of whether “ascii ” is on or off , the output file will still reassemble back into the original
binary. This is because the “ .ascii ” assembler directive and the “ .byte” assembler directive will produce the
same value bytes in the assembly process, and the extra “real byte values” are outputted as comments for
the assembler (as can be seen above).

Page 20 of 44

OPCODES
Format: opcodes

The “opcodes” switch causes the disassembler to output the actual byte values for any instruction that it
disassembles, as a comment on a line before the disassembled instruction. Here is an example of code that
has been disassembled with “opcodes” turned on. Note that this is the same code as was used for the
“addresses” example above:

; EBAC: 4F
LEBAC: clra
; EBAD: B7,01,77
LEBAD: staa L0177
; EBB0: 39
LEBB0: rts
; EBB1: 12,3B,04,5E
LEBB1: brset *L003B,#0x04,LEC13
; EBB5: CE,5B,00

ldx #0x5B00
; EBB8: 1F,08,04,57

brclr 0x08,x,#0x04,LEC13
; EBBC: 12,90,40,16

brset *L0090,#0x40,LEBD6
; EBC0: 14,90,40

bset *L0090,#0x40
; EBC3: 13,1E,04,4C

brclr *L001E,#0x04,LEC13
; EBC7: D6,31

ldab *L0031
; EBC9: E1,B8

cmpb 0xB8,x
; EBCB: 24,46

bcc LEC13

This is useful i f you just want to see what the bytes are to help with your understanding of the actual HC11
machine code, or if you are tracking a section that you think might be misinterpreted as code that really
should be data. This way you can see it in both forms.

The default mode if “opcodes” is not specified is OPCODES OFF.

In most cases, since the disassembler does a good job with separating code and data, you will probably want
to leave this option turned off (which is why I didn’ t include it in the sample Control File) as it will only
make the output file bigger. Note that this option will not affect the reassembly of the file since all of the
extra output is done as comments and will be ignored by the assembler. This option is here mainly for
debugging purposes when the disassembler was written, but was left as an option to be used as a learning
tool for newcomers to the HC11 processor and to be used in the rare case of data being misinterpreted as
code.

To see what the output would look like with the “opcodes” switch left off , please refer to the “addresses”
command.

Page 21 of 44

 Value Commands

INPUT
Format: input <filename>

The “ input” command allows you to specify the name of the source file for the disassembler to read. If a
path is not specified, the file must reside in the current directory. An extension need not be given, and if
none is given, none will be appended. The file must be in binary format, as that is the only format that is
supported by this version of the disassembler – future versions will support additional formats and will have
additional arguments and options for this command.

The file will be loaded at the offset address optionally specified by the “ load” command. If no “ load”
command is specified, then the address 0x0000 will be used.

The source file must fit within the memory bounds of the HC11 processor. That is, it cannot be bigger than
64K if loaded at 0x0000. If loaded higher than 0x0000, the size must also reflect this. For example, if the
load address is specified as 0x4000, then the file can be no bigger than 48K. Note that the file need not fill
the entire memory. If you are disassembling a 1K chunk of code that is originated at 0x0800 (for example),
then the binary needs to only contain the 1K chunk and a load address of 0x0800 should be specified.

In reality, you should not include bytes that aren’ t either code or data for the source you are disassembling.
For example, RAM areas in the processor address space should not be included. Typically, if these
locations have corresponding ROM addresses, they will be fill ed with 0xFF or 0x00 (depending on the
source), which you should omit. You should also not include processor control registers either. You may,
however, wish to define labels for the control registers or even labels for RAM variables. The disassembler
will properly tag these in the disassembly and setup equates for you. But, since these are in “volatile”
memory, the actual bytes should not be included directly in the binary image – unless of course you are
using the disassembler to disassemble a chunk of code that is transferred to the HC11 and run from RAM.

With this version of the disassembler, one and only one source file can be specified. Any additional “ input”
commands override previous “ input” commands and only the last specified file will be loaded.

Failure to specify the source input file will cause the disassembler to halt with an error.

Page 22 of 44

LOAD
Format: load <addr>

The “ load” command lets you specify the relative load offset address of where the source binary file will be
loaded. Since binary files, by definition, contain no address structure, this command is needed to specify
the absolute address of where in HC11 memory the file should be loaded. A file cannot be loaded outside
of the 64K boundary of the HC11.

The <addr> argument is assumed to be in hex, and should not contain a ‘0x’ or ‘$’ or anything else before it
or an ‘h’ or anything else after it. An example, to load a file at 0x4000, would be:

load 4000

Future versions will allow for other bases.

If no “ load” command is specified, 0x0000 is used.

Note that this is a relative offset for any addresses specified in the source file’s address structure. A binary
file (which is the only format supported by this version) has no address structure, therefore, the load address
will become the absolute address for the file. However, in future versions of the disassembler, when other
file types are available, since this is a relative load offset, if the file type of the input file does specify
address structure, this will offset the addresses in the file. For example, an Intel Hex file format specifies
addresses for each byte or group of bytes in the file. If the hex file specified 0x0080 as the starting address
and the load address specified by the “ load” command was 0x1000, then the file will be loaded at 0x1080.
But that will be in future versions.

Page 23 of 44

OUTPUT
Format: output <filename>

The “output” command allows you to specify the name of the output text file for the disassembler to write.
If a path is not specified, the file will be placed in the current directory. An extension need not be given,
and if none is given, none will be appended.

The entire portion of HC11 memory that is “ loaded” (that is has a corresponding byte in the input source
file) will be disassembled and written to the output file. The output file can then be viewed, edited, and/or
printed by any favorite text editor. This output file can be re-assembled if need be – see Reassembling a
Disassembly in this document.

Warning: If the specified output file exists, the disassembler will overwrite it with the new disassembly
without prompting you for confirmation. Any edits or changes you made by hand to the file will be lost.
Therefore, I suggest that after you’ve finished running the disassembler, and before you start doing any
manual editing or changes to the file, you rename the file. That way, if for some reason you need to re-run
the disassembler, or even accidentally re-run it, you won’ t inadvertently overwrite the previously edited file.
Similarly, be sure to not accidentally specify the name of an existing file that you want to keep. You have
been warned.

I typically use an extension of “ .dis” for the disassembler output file. I then rename it to have a “ .asm”
extension before editing it. The “ .asm” file then will become my cleaned up, commented version of the
disassembled code. That way, if I need to re-run the disassembler to, perhaps, disassemble some missed
portion of the code from the previous attempt (such as an indirect branch table), I can do so and then just
cut and paste as needed from the new “ .dis” file into the “ .asm” file without losing my edits. You may,
however, have a different system that you prefer. Future versions will allow for saving comments and edits
without losing them when re-running the disassembler.

Failure to specify the target output file will cause the disassembler to halt with an error.

Page 24 of 44

 List Entry Commands

ENTRY
Format: entry <addr>

The code-seeking portion of the disassembler works by creating a list of entry points and then scanning the
code starting with each entry point. If a branch or jump is encountered, the address for it, if it is a
resolvable address that isn’ t already in the entry point list, is added to the entry point list. When a
terminating instruction has been reached – such as an unconditional branch or return – then scanning with
that code portion ends and the next entry in the entry point list is used. This continues until all entry points
are exhausted.

The “entry” command allows you to specify hard entry points within the source. Typically, most of the
entry points in the source can be specified with indirects (see the “ indirect” command). But occasionally
you’ ll run into a portion of code that for some reason has no indirect vector and requires a hard entry point.
This is where the “entry” command comes into play. However, I suggest that if you can represent the entry
with an indirect that you do so, as the number of hard entries that can be specified in the control file is fairly
limited – see the section Limitations in This Version in this document. Since most entries can be done with
indirects (as most are jump tables) then in most cases this limitation will not keep you from disassembling
something that you need to – I’ve disassembled some very complex things with hundreds of undetermined
jumps and indirect entries and have never had problems with running out of entry points (however, I have
run out of labels – see the “ label” command – but not entry points). If you do run out of hard entry
addresses, the disassembler will warn you. Future versions won’ t be bound by this limitation.

With respect to the limitations described above, the sample Control File is somewhat of a bad example.
Most of the “entry” commands in that file should have been entered as “ indirect” since they were from jump
tables. However, in the example I was trying to ill ustrate the functionality differences between “entry” and
“ indirect” . And even then with a 48K source-file (not much less than the 64K size-limit of the processor), I
was able to enter them all without running into the limitation.

The <addr> argument is assumed to be in hex, and should not contain a ‘0x’ or ‘$’ or anything else before it
or an ‘h’ or anything else after it. An example, to specify a code entry point at 0x7C12, would be:

entry 7c12

Future versions will allow for other bases.

Between the hard “entry” commands and the “ indirect” commands in the control file, at least one entry
point into the source must be ascertained in order for the disassembler to produce any code output. If no
“entry” commands exist and no “ indirect” commands exist, then the file’s load address will be assumed to
be a code entry point and automatically added to the list. However, if any entry point is specified (either
from an “entry” or from an “ indirect”) then the source file load address is NOT added to the list of entry
points.

Page 25 of 44

INDIRECT
Format: indirect <addr> <label>

Most all jump tables and vector tables on any processor are done by using indirect addressing. An indirect
address is a memory location that contains a memory address to other location. These “ indirect addresses”
can be data or code, but in most cases are code pointers. A prime example of an indirect address on the
HC11 is 0xFFFE, which is the reset vector for the processor. Immediately after power-on, the HC11 reads
the 2 bytes starting at 0xFFFE and uses those 2-bytes as the address for starting the execution of the HC11
startup code.

The <addr> argument is assumed to be in hex, and should not contain a ‘0x’ or ‘$’ or anything else before it
or an ‘h’ or anything else after it. The <label> argument specifies the text that you want to use for the label.
The label must follow typical variable naming conventions – that is, it should only contain alphanumeric
characters and underscore (‘_’) and must start with a non-numeric first character. An example, to specify
the reset vector located at 0xFFFE, would be

indirect fffe reset

Future versions will allow for other bases.

This example is ill ustrated as follows:

RESET:
....
... reset program code ...
...

RSTVEC: .word RESET <-- this is at FFFE and specs the vector data

This allows us to specify the address for the indirect without having to specifically look it up and resolve it
by hand. The disassembler will l ook at address 0xFFFE and add the 2-byte value it finds there to the entry
point table. And, it will also add the label specified, which is “RESET” in the above example, to the label
table with the indirected address. Note that the label is assigned to the resolved address and not to the
vector itself! If you want to assign a label to the indirect vector itself, you should also use the “ label”
command to add the label for the vector – this is ill ustrated in the example Control File. That is where the
“RSTVEC” comes from in the above ill ustration.

On this version, labels are limited to six (6) characters and there is also a limit to the number of indirect
vectors that you can specify – see the section Limitations in This Version in this document. However, the
number of allowable indirects is suff iciently high enough that most all disassembly applications will have
more than enough. This character limit is why the label for the vector appears as “RSTVEC” in the above
example rather than as the specified “RSTVECT”. Future versions of the disassembler will get rid of the
character limit and the number of entries limit.

Additionally, this version assumes that all i ndirects are Code-Indirects, or indirect vectors to program code,
but it is also possible for source programs to have Data-Indirects, or indirect vectors to data, as well . Future
versions will allow you to specify both Data-Indirects and Code-Indirects.

Code-Indirect entries are another way of specifying entry points into the source. Between the hard “entry”
commands and the “ indirect” commands in the control file, at least one entry point into the source must be
ascertained in order for the disassembler to produce any code output. If no “entry” commands exist and no
“ indirect” commands exist, then the file’s load address will be assumed to be a code entry point and
automatically added to the list. However, if any entry point is specified (either from an “entry” or from an
“ indirect”) then the source file load address is NOT added to the list of entry points.

Page 26 of 44

LABEL
Format: label <addr> <label>

The “ label” command lets you assign a meaningful name to an address. If a label is needed for a particular
memory address during the disassembly and you have not assigned a name to that address, the disassembler
will create one in the form of “Lxxxx” where “xxxx” is the hexadecimal address of the memory location.

The <addr> argument is assumed to be in hex, and should not contain a ‘0x’ or ‘$’ or anything else before it
or an ‘h’ or anything else after it. The <label> argument specifies the text that you want to use for the label.
The label must follow typical variable naming conventions – that is, it should only contain alphanumeric
characters and underscore (‘_’) and must start with a non-numeric first character. An example, to specify a
label for the reset vector located at 0xFFFE, would be:

label fffe rstvect

Future versions will allow for other bases.

This allows us, when looking at a disassembly output, to easily know what is what from the meaningful
names. Instead of seeing either nothing or an Lxxxx name, we have a name that when we see it in the code,
we will recognize it as to what it is referring to.

On this version, labels are limited to six (6) characters and there is also a limit to the number of labels that
you can specify – see the section Limitations in This Version in this document. However, the number of
allowable labels is suff iciently high enough that most disassembly applications will have more than enough.
However, I’ve run into a few cases where there just wasn’ t enough label space. Future versions of the
disassembler will get rid of the character limit and the number of entries limit. The character limit will
cause the label in the above example to appear as “RSTVEC” rather than as the specified “RSTVECT”.
But, you can go ahead and specify the full name in preparation for the newer versions, as long as the first 6
characters are unique between labels.

If you attempt to add a label that is already in the label table, the addition will be ignored – keeping its
original definition.

Page 27 of 44

Error and Warning Messages
The following Error and Warning messages can be reported during the execution of this version of the
disassembler:

 Error Messages
*** Error: Opening Opcodes File: <filename>

This indicates that the disassembler had trouble either locating or opening the Opcodes File –
which is called “M6811DIS.OP” for this disassembler. Check to make sure that it is in the current
directory. While the disassembler can be run anywhere from the system path, the Opcodes File
must reside in the current directory at run-time.

*** Error: Opening Control File: <filename>
This indicates that the disassembler had trouble either locating or opening the specified Control
File. Check to make sure that the file exists and is accessible to the disassembler and that you
typed the name and/or path correctly on the command line.

*** Error: Input and Output files MUST be specified in Control File.
You must specify both the Input File (or Source File) and Output File somewhere within the
Control File.

*** Error: Opening Source File: <filename>
This indicates that the disassembler had trouble either locating or opening the Source File specified
in the Control File. Check to make sure the file exists and is accessible to the disassembler and
that you typed the name and/or path correctly in the Control File, and that you have read-access
rights to the file.

*** Error: Opening Output File: <filename>
This indicates that the disassembler had trouble opening the Output File specified in the Control
File. Check to make sure that you typed the name and/or path correctly in the Control File and that
the target directory exists and has suff icient free space and that you have write-access rights to that
directory.

*** Error: Writing Output File: <filename>
This indicates that the disassembler had trouble while writing a line to the Output File. Check to
make sure you haven’ t run out of disk space and that the disk is still properly mounted and
accessible or if it is via network that the network isn’ t down.

Not Enough Memory
During the initialization process the DOS memory limit was exceeded and the program isn’ t able
to run. Check to make sure that you are loading DOS in high memory and that no unnecessary
TSR (Terminate-and-Stay-Resident) programs such as mouse drivers, drive mappers, etc, are
loaded.

Page 28 of 44

 Warning Messages
*** Warning: Branch Buffer Full

This indicates that the internal table that stores reference addresses to all branches is full . Branch
addresses are added during the code-seeking pass of the disassembler as jumps and branches are
encountered. When the limit has been reached, the disassembler will continue to function,
however, sections of code that should be disassembled as code may come out as data because the
disassembler was unable to add the necessary entries to the branch table. See the section
Limitations in This Version in this document.

*** Warning: Branch Ref: <addr> is outside of Loaded Source File
This indicates that the branch that was added to the branch table, during the code-seeking portion
of the disassembler, referenced an address (indicated by <addr> above) that was outside of the area
loaded from the source file. This can occur normally when there are other memory sources, such
as dynamic ram routines, etc, that may not have been in the ROM image that was read and feed
into the disassembler. Therefore, this warning could be of littl e consequence. However, it can
also indicate that either the source file was not of the right size or that the load offset specified in
the Control File was incorrect and caused the Source File to be loaded at incorrect memory
locations. So check the source and make sure the warning makes sense.

*** Warning: Duplicate Label Definition
This warning is displayed anytime a label that has already been defined in the Control File is
redefined again within the Control File, based on address. With this version of the disassembler,
only one label can be defined per address and any attempt to label an address with more than one
label or name produces this warning and the extra label is ignored. You can, however, use the
same name for more than one address. Why you would want to, I don’ t know, as it will probably
cause any assembler that you later try to reassemble with to croak, not to mention confusing
yourself. The disassembler doesn’ t check for ambiguous names, cause it really doesn’ t care what
you call each address.

*** Warning: Entry Point: <addr> is outside of Loaded Source File
This warning is basically synonymous with Branch Ref outside of Loaded Source File. The
difference is that this applies to the entry points specified in the Control File, where as branch
addresses are from branches found by the disassembler. However, the same guidelines apply to
this warning as does the Branch Ref warning – so see “*** Warning: Branch Ref <addr> is outside
of Loaded Source File” for more information. Also, check to make sure that you have typed the
entry point correctly in the Control File.

*** Warning: Indirect Buffer Full
This warning indicates that the internal li st of indirect code vectors is full . Since this version of the
disassembler doesn’ t know how to add any indirects on its own, other than the ones you specify in
the Control File, this means that you’ve entered more indirects in the Control File than memory
allows for. See the section Limitations in This Version in this document. Once the table is full , the
extra entries are ignored, meaning that some of the code area may be incorrectly outputted as data.

*** Warning: Label Buffer Full
This warning indicates that the internal li st that associates a string label with an address is full .
This can either be a result from “ label” commands in the Control File, or from labels generated
during the code-seeking pass of disassembly and/or during indirect resolution. See the section
Limitations in This Version in this document. Once the table is full , any code areas needing a label
will still be disassembled with a “Lxxxx” label, however, the location itself won’ t have the label
labeling the line, and thus probably will not re-assemble without giving an unresolved reference or
unknown label error. The output is still very useful, especially if you use the “addresses”

Page 29 of 44

command in the Control File to output the addresses, and if there aren’ t too many missing labels, it
may not be too big of a chore to add them by hand later.

*** Warning: Memory wrap around encountered, Check Load Offset/File Length
This indicates that during the loading of the Source File, the file went past the 64K limit of the
processor space. The combined length (or size) of the Source File and the specified starting or
“ load” offset must not exceed 64K or 0xFFFF + 1. For example from the sample Control File, we
have a Source File that is 48K (or 0xC000 bytes) and a load offset of 0x4000 (or 16K). Together
that is 64K or 0x10000, which is 0xFFFF + 1. If we were to specify a starting address higher than
0x4000, the file would “wrap around” at the end of the 64K boundary of the processor back to an
address of 0x0000. In this particular version, the wrap will proceed back around to address
0x0000 and the file will continue loading from there. However, future versions may, and probably
will , terminate the file loading at the 64K boundary. So it is not a good practice to rely on this
wrapping effect in this version. If your file is too large to fit inside of 64K, such as that from a
128K Flash ROM or EPROM, then look for how the OEM of the equipment is bank selecting the
data. I guarantee you that no more than 64K is actually visible to the HC11 at any given time.
This means you’ ll have to break the source into multiple smaller parts and figure out how they
relate. And yes, I’ve seen 128K and even larger files for the HC11 that were bank selected. This
version provides no support for bank selecting, as the HC11 has no internal means (no machine
instructions, etc) for doing bank selecting of external memory – meaning that every
implementation of it will be unique. Future versions may allow for emulation of bank switching
methods, but you’ ll still have to reverse engineer the system enough to figure out what those
methods are and write a function or interface for the disassembler to emulate it. And, it may not be
possible to emulate all methods.

*** Warning: Too many ENTRY Commands
The number of “entry” commands that can be specified in the Control File is limited because of
memory constraints. However, usually very few direct entry points have to be specified because
most will be done with indirect vectors. If you run out of entry points, and really need more, you
can always “beat the system” by specifying them in an unused portion of the source binary and
using an “ indirect” command in the Control File. There SHOULD be an unused portion in the
source, as there has to be some sort of RAM memory used in the MPU. The desired effect will
result and you will have “beaten” the entry point limit. However, I’ve never run into any real
world application that needed more entry points than could be specified, since most things already
are indirects – like interrupt vectors, jump tables, etc. See the section Limitations in This Version
in this document.

*** Warning: Unrecognized command in Control File
This means that one or more commands in the Control File were not recognized. Check to make
sure that all li nes are either blank, start with a semicolon (‘ ;’) for a comment line, or begin with one
of the valid commands described in this document – perhaps it is just a typo. The commands can
be uppercase or lowercase or mixed, as everything is converted internally to uppercase. All values
must be in hexadecimal with no ‘0x’ or ‘$’ , etc, before it, and no ‘h’ , etc, after it – everything is
assumed to be in hexadecimal and may be falsely converted to zero (0) if you do otherwise. Future
versions will allow for different bases, but not this one.

Page 30 of 44

Disassembly Pitfalls
There are many pitfalls often encountered when reverse engineering and/or hacking a particular system.
Many aren’ t specific to any system, and since this document is not an explanation of how to do reverse
engineering, we will only talk about things specific with the HC11 and more specifically about this
disassembler.

 Code Inline Data
The first big quirk or pitfall that comes to mind is data bytes passed on “ jsr” or “bsr” instructions inline with
the code. Some HC11 compilers, such as Cosmic C, make standard practice of this. For example, suppose
you have the following code:

A_FUNC: .set OFST=12
jsr c_ents
.byte 12
ldd #3
jsr getvalue
clr 2,x
clr 3,x
std OFST-2,x
ldd 2,x
std OFST-4,x
clra
clrb
std 2,x

This is a snippet of code from a real compiled program. Notice the “ .byte 12” after the “ jsr” . That is an
inline data argument passed to the function “c_ents” . It is cleaner and has less overhead than pushing and
popping the argument on the stack, but it causes problems with any disassembler. The problem is that the
disassembler has no way of knowing that the “12” (or 0x0C) after the “ jsr” is in fact a data byte. It will be
assuming that the bytes immediately following the “ jsr” will be the next instruction. In this particular case,
since 0x0C is equivalent to the “clc” instruction – which happens to be a one byte immediate instruction,
this will be interpreted by the disassembler as (OFST=12):

A_FUNC: jsr C_ENTS
clc
ldd #3
jsr GETVAL
clr 2,x
clr 3,x
std 10,x
ldd 2,x
std 8,x
clra
clrb
std 2,x

In this case, it is only a bit confusing as you may think the “clc” (or clear-carry instruction) is a legitimate
command and that may cause you to incorrectly interpret the code following the “ jsr” . In other cases, it can
be more extreme. Suppose that instead of a simple one-byte immediate instruction, the byte happened to be
the first byte of a two, three, or more, byte instruction? Then it could be that the “ ldd #3” that follows and
possibly even more instructions would get mangled as well , into erroneous instructions. Eventually, either
the number of bytes will happen to fall back on track or you’ ll encounter an ill egal byte that creates an
unknown instruction for the processor – either will get the disassembly back on track. But, this can cause
problems with the code seeker, because suppose that one of the erroneous instructions happened to be a
branch or jump of some sort, or worse yet is a return instruction. Or what if one of the mangled instructions
was supposed to be a jump or branch. In the first case, you’d be adding extra incorrect branches (and may
possibly pre-maturely end the current code section) and in the last case you’ ll fail to add a branch that
should be added, which unless it is called elsewhere will result in code sections that will be outputted as
data.

The fix for this problem isn’ t as easy as it appears. If each function had inline data of a fixed length, it
would be fairly easy – you simply implement another list in the disassembler and specify that function “xyz”
always has, for example, 2 bytes of data following any jump or branch to that function. The disassembler,

Page 31 of 44

when it encounters a call to function “xyz”, would simply treat the 2 bytes following the call as data. But,
the problem is that first you have to realize that that particular function uses data bytes in that fashion and
tell the disassembler and that it is always 2 data bytes. What do we do if the number of bytes is variable?
How can the disassembler know? An example of variable length would be a null -terminated string passed
as inline data after a call . The length is determined by where the null i s placed. Or what if, instead, it is a
length/string argument where the first byte after the call i s the length of the string or data that follows?

As you can see, there isn’ t an immediate, simple, fix-all solution. So, this version of the disassembler
doesn’ t deal with the problem at all . (Sorry). In future versions, I’m contemplating a “ fixed length” solution
and possibly a solution of object types whereby you can specify certain typings and/or methods that the
disassembler can use to figure out lengths on variable inline data.

 Undetermined Branch Address
Another very common pitfall i s when the disassembler encounters a branch that it simply cannot figure out
– such as a branch that is based off of register value. An example:

jsr 0,x

Since the disassembler has no way of knowing what value is contained in “x” it will not know what address
the “ jsr” branches to. When this occurs, the disassembler will comment the output file with “Undetermined
Branch Address” . Fortunately, many of these are simple jump tables. Look at the code proceeding the “ jsr”
for any loading of the “x” register. Often you’ ll see the address of a branch table loaded and then an offset
in the table added to it. That will be followed by something like “ ldx 0,x” to load the actual vector from the
table and then you’ ll have the “ jsr 0,x” . All you have to do is add “ indirect” commands to the Control File
for each entry in the branch table and then re-run the disassembler. This will allow the disassembler to
track and disassemble all of the code that is there. I usually use the convention of naming the first indirect
in the first jump table as “JT1R1” (for jump table 1 routine 1), the next routine as “JT1R2” , and so on.
When I come to the next table, I use “JT2R1” , etc. Later on, once I actually figure out what “JT1R1” , etc,
really do, I’ ll give them more meaningful names. You may have a better method – so use whatever works
well for you.

Unfortunately, there are still occasional calls, jumps, or branches that are not determinable by the
disassembler and that even when you look at them, you can’ t figure out what they are as they may have no
obvious jump table. The only solution for this is to figure out what the rest of the code does and work to
figure out exactly what is called by the ill usive function. I’ve always found that by working on other parts,
parts that were more obvious, then eventually, before all was said and done, that I knew exactly what this
call was for and why it was so ill usive. But in any case, it does make li fe more diff icult.

 Addresses as Immediate Values
When a disassembler encounters an immediate value for an instruction, it has no way of knowing whether it
should be treated strictly as a value or if it is really an address, or worse yet, an offset to some address. For
example, suppose you encounter a system that, for the sake of argument, still has the HC11 registers located
at 0x1000 in the HC11 memory space. And, you come across a routine that reads/writes from the SCI data
register at 0x102F. You may encounter simple reads and writes directly to this address, such as:

lda $102F

(which is an extended addressing mode) which would be interpreted by the disassembler as:

lda L102F

You can later equate L102F with SCDR and your done.

Page 32 of 44

But, you may encounter something like:

ldy #$102F
lda 0,y

In this case, since the 0x102F is an immediate value, the disassembler has no way of knowing that it really
corresponds to an address. For these, you’ ll have no choice but to manually change the $102F to SCDR
(don’ t forget to add the label for 0x102F as SCDR in the Control File):

ldy #SCDR
lda 0,y

Worse yet, you can also encounter the following:

ldy #$1000
lda $2F,y

Here, the immediate value 0x1000 is the base address of the registers and 0x2F is the offset. This is why on
the Ports files that I included, you’ ll see both direct addresses and register base relative addresses. That
way, you can manually convert this to:

ldy #REGBASE
lda PSCDR,y

Where “regbase” is defined by you as the base for the HC11 registers and should also be the address that
you originate the corresponding “ports” file when later re-assembling. In the example “ports” files, you’ ll
notice that I’ve defined, in this particular case, SCDR as being the direct full address of the SCDR register
or 0x102F (or wherever you originate the ports file) and PSCDR as being a pointer to the register relative
address of SCDR or 0x2F. This allows us to use both names in the code to cover whatever form they are in.

As I’ve said, there is no way for the disassembler to know when it encounters an immediate value if that
immediate value is really an address or if it is only data, and register-offset addresses (such as the lda $2F,y)
are even worse yet. Thus the only recourse is to manually edit it in the output file – Usually, search-and-
replace works well for this.

 Code Paging
The HC11 can only directly access 64K bytes of memory. This includes all RAM, ROM, Registers,
Memory-Mapped Devices, etc. Unfortunately, many programs, especially those written by today’s
ineff icient compilers, exceed this limit. This causes the designer to have to implement work-arounds. The
most common is to implement a method of paging in multiple banks of memory. Unfortunately, not only
does the HC11 not support more than 64K of direct access, but also it has no built -in means for performing
paging either. Thus, the designer is left to implement his or her own unique solution to the paging problem.

The biggest problem for the designer isn’ t so much that there must be some external paging means, but that
there can be no direct access of data from one page to another across page boundaries – since there are no
code-segment and data-segment registers as can be found in processors like the 8088. For the reverse-
engineer and/or hacker, this further complicates things because there is no “standard method” for
implementing the paging technique.

One common way to implement a simple 2-bank method is to use a 128K byte ROM and connect the upper
address line to an output port pin of the HC11. Part of the ROM’s code is duplicated from one half of the
ROM to the other so that it is accessible by the HC11 in both pages – i.e. the common page. The common
page is the page that must do the actual page swaps. The other half of the ROM is unique to that page and
allows an extra extension of the ROM in the range of 32K to 64K depending on the sections that must be
common and/or duplicated across pages.

Page 33 of 44

Another common technique is to use PAL or PLD logic to serve as a page register. This allows for more
intricate design and layout of the pages and would allow for more flexibilit y as to where the pages get
“banked-in” and when. But, this really makes li fe diff icult for the hacker or reverse-engineer.

This list could go on and on – unfortunately – as there is no single technique, not even a unique dozen, that
can describe all the different methods people have used for paging. Therefore, when reverse-engineering
large projects, it will be necessary to determine the paging technique (if any) by hand. It also means, since
the disassembler can only deal with the HC11’s direct 64K space, that you must divide the source up into
multiple files – each corresponding to unique pages – and run them separately through the disassembler.
And, not only does the disassembler have problems with multiple pages, but HC11 assemblers have
problems as well . Most assemblers will require that you uniquely assemble each section and then link them
correctly into the correct positions in the final output file.

 Laziness
“But I don’ t want to have to go through the program and tag all of the indirect vectors and entry point
locations; I just want it to dump out the code.” Well , there isn’ t much that can be done about being lazy,
but there can be a “spit” mode that disables the code-seeking portion – or more correctly, labels everything
as code – and dumps or “spits” the disassembly out. This can be useful in systems that have a large number
of indirects and you want to do a quick hack on the file and don’ t really care about truly reverse engineering
the code.

When this program was developed, the initial goal was reverse engineering, not hacking. Therefore, this
version has no “spit” mode. However, because of many requests from hackers that want quick results,
future versions will i ncorporate a “spit” command in the Control File that will disable the code-seeker and
simply output a disassembly of everything in much the same form of an ordinary “dumb” disassembler.

 Others
Well , this is about all I can think of including at this present time. I’m sure there are many more that
warrant being added to this document. If you know of any, let me know and it will possibly be included in
future editions. See the Support section in this document for contact information.

Page 34 of 44

MC68HC11 Overview
As previously stated, the purpose of this document isn’ t to teach you about the functionality of the HC11 –
that’s what Motorola’s documentation is for. However, for completeness, I thought it wise to include a list
of opcodes and corresponding mnemonics that the disassembler processes as well as how the disassembler’s
code-seeker behaves with each – and that is what the following table is all about. For everything else, check
out Motorola’s website (www.mot-sps.com).

Mnemonic Machine
Code

Form Disassembler
Action

Discontinue
Disassembly

test 00 test
nop 01 nop

idiv 02 idiv
fdiv 03 fdiv
lsrd 04 lsrd
lsld 05 lsld
tap 06 tap
tpa 07 tpa
inx 08 inx
dex 09 dex
clv 0A clv
sev 0B sev
clc 0C clc
sec 0D sec
cli 0E cli
sei 0F sei
sba 10 sba
cba 11 cba

brset 12 dd mm rr brset *dd,#mm,.+rr Add Data Label, Add Branch Addr & Label
brclr 13 dd mm rr brclr *dd,#mm,.+rr Add Data Label, Add Branch Addr & Label
bset 14 dd mm bset *dd,#mm Add Data Label
bclr 15 dd mm bclr *dd,#mm Add Data Label
tab 16 tab
tba 17 tba
iny 18 08 iny
dey 18 09 dey

bset 18 1C ff mm bset ff,y,#mm
bclr 18 1D ff mm bclr ff,y,#mm

brset 18 1E ff mm rr brset ff,y,#mm,.+rr Add Branch Addr & Label
brclr 18 1F ff mm rr brclr ff,y,#mm,.+rr Add Branch Addr & Label

tsy 18 30 tsy
tys 18 35 tys

puly 18 38 puly
aby 18 3A aby

pshy 18 3C pshy
neg 18 60 ff neg ff,y
com 18 63 ff com ff,y
lsr 18 64 ff lsr ff,y
ror 18 66 ff ror ff,y
asr 18 67 ff asr ff,y
lsl 18 68 ff lsl ff,y
rol 18 69 ff rol ff,y
dec 18 6A ff dec ff,y
inc 18 6C ff inc ff,y
tst 18 6D ff tst ff,y
jmp 18 6E ff jmp ff,y Undeterminable Branch discontinue
clr 18 6F ff clr ff,y
cpy 18 8C jj kk cpy #jjkk

xgdy 18 8F xgdy
cpy 18 9C dd cpy *dd Add Data Label

suba 18 A0 ff suba ff,y
cmpa 18 A1 ff cmpa ff,y
sbca 18 A2 ff sbca ff,y
subd 18 A3 ff subd ff,y
anda 18 A4 ff anda ff,y
bita 18 A5 ff bita ff,y
ldaa 18 A6 ff ldaa ff,y
staa 18 A7 ff staa ff,y
eora 18 A8 ff eora ff,y
adca 18 A9 ff adca ff,y
oraa 18 AA ff oraa ff,y
adda 18 AB ff adda ff,y
cpy 18 AC ff cpy ff,y
jsr 18 AD ff jsr ff,y Undeterminable Branch
lds 18 AE ff lds ff,y
sts 18 AF ff sts ff,y
cpy 18 BC hh ll cpy hhll Add Data Label
ldy 18 CE jj kk ldy #jjkk
ldy 18 DE dd ldy *dd Add Data Label
sty 18 DF dd sty *dd Add Data Label

subb 18 E0 ff subb ff,y
cmpb 18 E1 ff cmpb ff,y
sbcb 18 E2 ff sbcb ff,y

Page 35 of 44

addd 18 E3 ff addd ff,y
andb 18 E4 ff andb ff,y
bitb 18 E5 ff bitb ff,y
ldab 18 E6 ff ldab ff,y
stab 18 E7 ff stab ff,y
eorb 18 E8 ff eorb ff,y
adcb 18 E9 ff adcb ff,y
orab 18 EA ff orab ff,y
addb 18 EB ff addb ff,y
ldd 18 EC ff ldd ff,y
std 18 ED ff std ff,y
ldy 18 EE ff ldy ff,y
sty 18 EF ff sty ff,y
ldy 18 FE hh ll ldy hhll Add Data Label
sty 18 FF hh ll sty hhll Add Data Label
daa 19 daa
cpd 1A 83 jj kk cpd #jjkk
cpd 1A 93 dd cpd *dd Add Data Label
cpd 1A A3 ff cpd ff,x
cpy 1A AC ff cpy ff,x
cpd 1A B3 hh ll cpd hhll Add Data Label
ldy 1A EE ff ldy ff,x
sty 1A EF ff sty ff,x
aba 1B aba

bset 1C ff mm bset ff,x,#mm
bclr 1D ff mm bclr ff,x,#mm

brset 1E ff mm rr brset ff,x,#mm,.+rr Add Branch Addr & Label
brclr 1F ff mm rr brclr ff,x,#mm,.+rr Add Branch Addr & Label

bra 20 rr bra .+rr Add Branch Addr & Label discontinue
brn 21 rr brn .+rr Add Branch Addr & Label
bhi 22 rr bhi .+rr Add Branch Addr & Label
bls 23 rr bls .+rr Add Branch Addr & Label
bcc 24 rr bcc .+rr Add Branch Addr & Label
bcs 25 rr bcs .+rr Add Branch Addr & Label
bne 26 rr bne .+rr Add Branch Addr & Label
beq 27 rr beq .+rr Add Branch Addr & Label
bvc 28 rr bvc .+rr Add Branch Addr & Label
bvs 29 rr bvs .+rr Add Branch Addr & Label
bpl 2A rr bpl .+rr Add Branch Addr & Label
bmi 2B rr bmi .+rr Add Branch Addr & Label
bge 2C rr bge .+rr Add Branch Addr & Label
blt 2D rr blt .+rr Add Branch Addr & Label
bgt 2E rr bgt .+rr Add Branch Addr & Label
ble 2F rr ble .+rr Add Branch Addr & Label
tsx 30 tsx
ins 31 ins

pula 32 pula
pulb 33 pulb
des 34 des
txs 35 txs

psha 36 psha
pshb 37 pshb
pulx 38 pulx
rts 39 rts discontinue
abx 3A abx
rti 3B rti discontinue

pshx 3C pshx
mul 3D mul
wai 3E wai
swi 3F swi

nega 40 nega
coma 43 coma
lsra 44 lsra
rora 46 rora
asra 47 asra
lsla 48 lsla
rola 49 rola
deca 4A deca
inca 4C inca
tsta 4D tsta
clra 4F clra
negb 50 negb
comb 53 comb
lsrb 54 lsrb
rorb 56 rorb
asrb 57 asrb
lslb 58 lslb
rolb 59 rolb
decb 5A decb
incb 5C incb
tstb 5D tstb
clrb 5F clrb
neg 60 ff neg ff,x
com 63 ff com ff,x
lsr 64 ff lsr ff,x
ror 66 ff ror ff,x
asr 67 ff asr ff,x
lsl 68 ff lsl ff,x
rol 69 ff rol ff,x
dec 6A ff dec ff,x
inc 6C ff inc ff,x

Page 36 of 44

tst 6D ff tst ff,x
jmp 6E ff jmp ff,x Undeterminable Branch discontinue
clr 6F ff clr ff,x
neg 70 hh ll neg hhll Add Data Label
com 73 hh ll com hhll Add Data Label
lsr 74 hh ll lsr hhll Add Data Label
ror 76 hh ll ror hhll Add Data Label
asr 77 hh ll asr hhll Add Data Label
lsl 78 hh ll lsl hhll Add Data Label
rol 79 hh ll rol hhll Add Data Label
dec 7A hh ll dec hhll Add Data Label
inc 7C hh ll inc hhll Add Data Label
tst 7D hh ll tst hhll Add Data Label
jmp 7E hh ll jmp hhll Add Branch Addr & Label discontinue
clr 7F hh ll clr hhll Add Data Label

suba 80 ii suba #ii
cmpa 81 ii cmpa #ii
sbca 82 ii sbca #ii
subd 83 jj kk subd #jjkk
anda 84 ii anda #ii
bita 85 ii bita #ii
ldaa 86 ii ldaa #ii
eora 88 ii eora #ii
adca 89 ii adca #ii
oraa 8A ii oraa #ii
adda 8B ii adda #ii
cpx 8C jj kk cpx #jjkk
bsr 8D rr bsr .+rr Add Branch Addr & Label
lds 8E jj kk lds #jjkk

xgdx 8F xgdx
suba 90 dd suba *dd Add Data Label
cmpa 91 dd cmpa *dd Add Data Label
sbca 92 dd sbca *dd Add Data Label
subd 93 dd subd *dd Add Data Label
anda 94 dd anda *dd Add Data Label
bita 95 dd bita *dd Add Data Label
ldaa 96 dd ldaa *dd Add Data Label
staa 97 dd staa *dd Add Data Label
eora 98 dd eora *dd Add Data Label
adca 99 dd adca *dd Add Data Label
oraa 9A dd oraa *dd Add Data Label
adda 9B dd adda *dd Add Data Label
cpx 9C dd cpx *dd Add Data Label
jsr 9D dd jsr *dd Add Branch Addr & Label
lds 9E dd lds *dd Add Data Label
sts 9F dd sts *dd Add Data Label

suba A0 ff suba ff,x
cmpa A1 ff cmpa ff,x
sbca A2 ff sbca ff,x
subd A3 ff subd ff,x
anda A4 ff anda ff,x
bita A5 ff bita ff,x
ldaa A6 ff ldaa ff,x
staa A7 ff staa ff,x
eora A8 ff eora ff,x
adca A9 ff adca ff,x
oraa AA ff oraa ff,x
adda AB ff adda ff,x
cpx AC ff cpx ff,x
jsr AD ff jsr ff,x Undeterminable Branch
lds AE ff lds ff,x
sts AF ff sts ff,x

suba B0 hh ll suba hhll Add Data Label
cmpa B1 hh ll cmpa hhll Add Data Label
sbca B2 hh ll sbca hhll Add Data Label
subd B3 hh ll subd hhll Add Data Label
anda B4 hh ll anda hhll Add Data Label
bita B5 hh ll bita hhll Add Data Label
ldaa B6 hh ll ldaa hhll Add Data Label
staa B7 hh ll staa hhll Add Data Label
eora B8 hh ll eora hhll Add Data Label
adca B9 hh ll adca hhll Add Data Label
oraa BA hh ll oraa hhll Add Data Label
adda BB hh ll adda hhll Add Data Label
cpx BC hh ll cpx hhll Add Data Label
jsr BD hh ll jsr hhll Add Branch Addr & Label
lds BE hh ll lds hhll Add Data Label
sts BF hh ll sts hhll Add Data Label

subb C0 ii subb #ii
cmpb C1 ii cmpb #ii
sbcb C2 ii sbcb #ii
addd C3 jj kk addd #jjkk
andb C4 ii andb #ii
bitb C5 ii bitb #ii
ldab C6 ii ldab #ii
eorb C8 ii eorb #ii
adcb C9 ii adcb #ii
orab CA ii orab #ii
addb CB ii addb #ii
ldd CC jj kk ldd #jjkk
cpd CD A3 ff cpd ff,y

Page 37 of 44

cpx CD AC ff cpx ff,y
ldx CD EE ff ldx ff,y
stx CD EF ff stx ff,y
ldx CE jj kk ldx #jjkk

stop CF stop
subb D0 dd subb *dd Add Data Label
cmpb D1 dd cmpb *dd Add Data Label
sbcb D2 dd sbcb *dd Add Data Label
addd D3 dd addd *dd Add Data Label
andb D4 dd andb *dd Add Data Label
bitb D5 dd bitb *dd Add Data Label
ldab D6 dd ldab *dd Add Data Label
stab D7 dd stab *dd Add Data Label
eorb D8 dd eorb *dd Add Data Label
adcb D9 dd adcb *dd Add Data Label
orab DA dd orab *dd Add Data Label
addb DB dd addb *dd Add Data Label
ldd DC dd ldd *dd Add Data Label
std DD dd std *dd Add Data Label
ldx DE dd ldx *dd Add Data Label
stx DF dd stx *dd Add Data Label

subb E0 ff subb ff,x
cmpb E1 ff cmpb ff,x
sbcb E2 ff sbcb ff,x
addd E3 ff addd ff,x
andb E4 ff andb ff,x
bitb E5 ff bitb ff,x
ldab E6 ff ldab ff,x
stab E7 ff stab ff,x
eorb E8 ff eorb ff,x
adcb E9 ff adcb ff,x
orab EA ff orab ff,x
addb EB ff addb ff,x
ldd EC ff ldd ff,x
std ED ff std ff,x
ldx EE ff ldx ff,x
stx EF ff stx ff,x

subb F0 hh ll subb hhll Add Data Label
cmpb F1 hh ll cmpb hhll Add Data Label
sbcb F2 hh ll sbcb hhll Add Data Label
addd F3 hh ll addd hhll Add Data Label
andb F4 hh ll andb hhll Add Data Label
bitb F5 hh ll bitb hhll Add Data Label
ldab F6 hh ll ldab hhll Add Data Label
stab F7 hh ll stab hhll Add Data Label
eorb F8 hh ll eorb hhll Add Data Label
adcb F9 hh ll adcb hhll Add Data Label
orab FA hh ll orab hhll Add Data Label
addb FB hh ll addb hhll Add Data Label
ldd FC hh ll ldd hhll Add Data Label
std FD hh ll std hhll Add Data Label
ldx FE hh ll ldx hhll Add Data Label
stx FF hh ll stx hhll Add Data Label

Where:
dd = 8-Bit Direct Address (0x0000 – 0x00FF). High byte assumed to be 0x00.
ff = 8-Bit Positive Offset 0x00 (0) to 0xFF (255) added to index register value.
hh = High Order Byte of a 16-bit Extended Address.
ii = Single Byte of Immediate Data.
jj = High Order Byte of 16-Bit Immediate Data.
kk = Low Order Byte of 16-Bit Immediate Data.
ll = Low Order Byte of a 16-bit Extended Address.
mm = 8-Bit Mask (Bits that are set are the bits that will be affected).
rr = Signed Relative Offset 0x80 (-128) to 0x7F (127).

Offset is relative to the address following the machine code offset byte.

Instructions listed as “discontinue disassembly” are instructions that end the current stream of code. The
code-seeker starts with the first entry point and disassembles until one of the following conditions is
satisfied:

• An instruction flagged as “discontinue” is encountered (these are hard jumps or returns)
• It encounters code that has already been tested.
• It encounters an ill egal instruction (an opcode byte that isn’ t in the above table)

It then reads the next entry point, and continues iterating until all entry points are exhausted.

Page 38 of 44

Reassembling a Disassembly
As stated earlier in this document, there are typically two approaches to disassembly work – hacking and
reverse-engineering. Typically, the hacker is only interested in finding out what is in a program or binary
enough to complete a hack and isn’ t interested in the overall scheme of figuring out the how and why of the
workings of the entire system. So for the hacker, being able to reassemble a disassembly is probably of
littl e or no importance. However, to the serious person working on fully reverse engineering a system,
being able to easily reassemble a disassembly is a li fe-send. The M6811 Code-Seeking Disassembler was
designed for the reverse-engineer and so the output was targeted for a specific assembler.

This disassembler targets is the AS6811 assembler written by Alan Baldwin at Kent State University’s
Physics Department (not to be confused with the Motorola AS11 freeware assembler). Alan’s entire
assembler set and relocating linker is a superb piece of workmanship, which is why it was chosen as the
target output form for this disassembler.

The AS6811 assembler is available in freeware/shareware form with complete source code and can be
found on many freeware CD-ROM sets, including several by Walnut Creek. So, you should be able to
locate the assembler without problem. If not, you can download it from my website, or other site, as
described in the Support Section of this document.

For most programs, you can use the assembler unmodified to reassemble this disassembler’s output back
into the original binary. However, there are a few considerations you should keep in mind. The first one is
the memory model that the pre-compiled version of the assembler is designed for. Sometimes it is
necessary to rebuild the assembler from the source using a larger memory model in order to assemble very
large HC11 programs.

Another problem, and probably the main problem, is the extended address optimizer in the assembler.
Alan’s assembler, when given an address in the 0x0000 to 0x00FF range, will optimize the assembled code
to be that of a Direct Address Mode instruction (see the tables in the MC68HC11 Overview section of this
document) regardless of whether you specify it as a Direct Mode instruction (“*” operator) or not.
Ordinarily, this is a good feature of the assembler and allows you to produce binary files that are properly
space optimized. However, the HC11 also allows for Extended Address Mode instructions to also access
the range of 0x0000 to 0x00FF. This can cause output from the disassembled code, when reassembled, to
not match that of the original binary if the original binary has one or more instructions that are not
optimized into the Direct Mode form – not a good thing when reverse-engineering.

To solve this problem, this disassembler will use the “*” operator for the target address on all Direct
Address Mode instructions. This should signify to the assembler that it is indeed a Direct Address in the
0x0000 to 0x00FF range. Any extended addresses will be outputted by the disassembler with no prefix
operator. The assembler should interpret these addresses as being Extended Mode addresses, regardless of
the fact that they might be in the 0x0000 to 0x00FF range. Unfortunately, this means that Alan’s assembler
source code must be altered to disable this optimizing feature in order to produce truly compatible binaries.

So, I recommend you download the source code version of the assembler, disable the optimizer, and
recompile in a large memory model. Again, refer to the Support section in this document, as I do offer an
already modified version of the assembler both in source and in binary form – but, to maintain proper
redistribution policies of his license, I do have it in the true, unmodified form. So while you can use the
unmodified version for reassembling code that is anatomically correct, you should be aware that if you
reassemble and the sizes and/or addresses don’ t seem to match, start looking for optimized verses non-
optimized instructions. Typically, the first point of divergence will be the first non-optimized instruction.

Other details of assembly are out of the scope of this document – for those, I refer you to Alan’s manual that
comes with the assembler, as well as Motorola documentation.

Page 39 of 44

Limitations in This Version
This version, since it is compiled as a DOS mode 16-bit program, is limited to the 640K boundary of DOS.
Additionally, the compiler used also requires all objects to be no larger than one 64K segment – in other
words, it uses only offset (16-bit) addressing for these objects rather than a full 32-bit address. Therefore,
all of the internal tables in the program must not exceed 64K. I guess I could have gotten fancy and had
multiple parts of the table in separate 64K segments, but that would have greatly complicated the design and
would have slowed it down. See the section on Future Versions to see how these limitations will be
eliminated in upcoming releases.

The worst two limitations are the name size limit for labels and the label table overall size – and yes, these
two are related. If the size of the label names were increased, the number of entries must be reduced. In
some large applications, it is possible to run out of label entries (as I have experienced), so I decided to
limit the name length for the labels as a trade-off between label name length and number of label entries.

The next big limitation is the number of branch table entries, but usually you run out of label table entries
first, since all branches will get a label in addition to the labels from the data areas – so obviously more
labels are used. Thus far, I’ve never run out of branch table entries – yet.

Below is a table denoting the limitations within this version:

Item Limit Units
Entry Address (Control File Only) 32 Table Entries
Branch Address Table 4096 Table Entries
Label Table 4096 Table Entries
Label Name Size 6 Characters
Indirect Table 512 Table Entries
Indirect Vector Types Code Only Vector Type
Source Binary 65536 Bytes
File Format Binary Only File Type
Number of Loadable Source Files 1 Input Files
Number of Loadable Control Files 1 Control Files
Number Format (Control File Only) Hexadecimal Data Type
Code-Seeking Seek Only (no spit) Seek Methods

Page 40 of 44

Bugs
With any software application, it is likely that at least one bug will exist somewhere. Unfortunately, this
version of the M6811 Code-Seeking Disassembler is no exception. However, all of the known bugs have
benign consequences, can be easily resolved, and do not hinder the disassembly process. Below is a list of
known bugs along with how to “ fix” them. Obviously, these are only the ones that I know about, meaning
that there could be others. If you find additional bugs, or think you have, please contact me and let me
know – See the Support section for contact information:

Erroneous “*** Error: Opening Source File” messages
This is caused by a missing or corrupt “m6811dis.op” file. Make sure that you have a good copy
of the m6811dis.op file in the current directory at the time you run the disassembler. I failed to
reset the IO error status after reading (or attempting to read) the opcodes file. Since the source file
is read after the opcodes file, this results in an erroneous error message indicating that the source
file has problems.

Program Runs Forever in an Endless Loop and Fill s Up Remaining Hard Disk Space
The disassembler determines the end of the file by looking at loaded vs. unloaded parts of the
source binary. If you load a full 64K (65536) byte source file, the program will erroneously loop
around (because of a 16-bit pointer) and keep looping when writing the output file. To fix this,
trim the unused RAM area and processor register area out of your source binary file. You
shouldn’ t be trying to load these unused portions anyway as they can cause erroneous output in the
output file by it thinking that a memory address has a certain value when in reality it is dependent
upon what is in the RAM, which will obviously be different. There will be some RAM mapped
somewhere, as it is needed for stack space.

Mid-Opcode Labels Don’ t Get Reported in Output
This isn’ t so much of a bug as it is from being either invalid code seeking from things such as Code
Inline Data (See Disassembly Pitfalls in this document) or incorrectly specified labels in the
Control File. What happens is that if a label is specified or generated and the address for that label
happens to occur in the middle of an instruction (rather than being the address for the first byte of
an instruction), the label doesn’ t get assigned in the output file. In reality, this erroneous label
should have never gotten generated in the first place and can be caused by you specifying wrong
entry points and/or indirect entries in the control file, or by having the code somehow skewed, such
as with Code Inline Data, or by just having erroneous screwy code in the first place. This bug (or
quirk) is no big deal and will only cause an assembler to later report that a label wasn’ t defined.
You should examine any such labels to find the cause and if necessary, add equates before re-
assembling.

Page 41 of 44

Support

 The Disassembler
I will continue to maintain this version and will be enhancing it and releasing future versions. This version,
and future M6811 only disassemblers will be provided free of charge and can be freely distributed provided
you supply the disassembler in its entirety, including support files, without changes or modifications. This
does not apply to GenREP (the Generic Reverse Engineering Platform) that I’m developing, which will
have a M6811 module. That application, when completed, will be a commercial product – or so that is the
current plan.

Currently, my ISP only provides dynamic IP support and so I cannot register a domain name for my web
server machine. However, I keep a dynamic front-end page on their server that constantly points to the web
server on my machine. The front-end page can be found at: http://home.midsouth.rr.com/dewtronics

Once on my site, browse for the downloads-section. There you’ ll find this M6811 Code-Seeking
Disassembler (in any of the versions I create), as well as the AS6811 assembler both in virgin and in
modified forms as described earlier in this document. I will also have copies of some of the Motorola
documentation in .pdf format, since Motorola’s website is so hideous (and almost impossible) to locate
anything – or so it used to be unless they’ve recently changed its layout.

If you find any bugs, have suggestions or ideas for program enhancement, or have any questions in general,
you can email me at: dewtronics@tech-center.com

 Motorola
Documentation on the MC68HC11 processor family, as well as other assemblers, disassemblers, and
support utiliti es, can be found on Motorola’s website – if you look hard enough that is. Unless they’ve
improved their site recently, it will t ake a bit of hunting and searching around – though keep looking,
because it is there somewhere. Their website is at http://www.mot-sps.com.

 Third Party (Assemblers, etc)
Alan Baldwin’s M6811 assembler can be found on my website as well as from many freeware/shareware
CD distribution houses, such as Walnut Creek. Many of the CD-ROM’s are online and can probably be
found on the web, though I haven’ t really looked. The version I have tested against, Version 1.50, with
source, came directly from Alan himself back in April of 1995. Since then, he has generated newer versions
and made additional enhancements. At the time of this writing, I have not confirmed the functionality of
newer versions with this disassembler. As I come across other versions and resources, I will post them
online to be downloaded, but will keep Version 1.50 online as well since I know for certain that it works.

According to the AS6811 documentation, Alan can be reached at the following address:

Alan R. Baldwin
Kent State University
Physics Department
Kent, Ohio 44242
Phone: 330-672-2531
Fax: 330-672-2959

Page 42 of 44

His documentation also states that the assembler is available via anonymous FTP to: shop-pdp.kent.edu.
And that it is also available from the C Users’ Group:

The C Users’ Group
1601 W. 23rd Street, Suite 200
Lawrence, KS 66046-2700 USA
Phone: 913-841-1631
Fax: 913-841-2624

As I was writing this document, I checked his anonymous FTP site and it does indeed contain a newer
version of the assembler – Version 2.10 to be exact, dated April of 1999. At first glance, there doesn’ t
appear to be any problems with using this newer version. I will t est it as soon as possible and update this
document accordingly. It does look like this new version has Linux support – hurray!

The ASxxxx collection contains cross assemblers for the 6800(6802/6808), 6801(hd6303), 6804, 6805,
68HC08, 6809, 68HC11, 68HC12, 68HC16, 8051, 8085(8080), z80(hd64180), H8/3xx, and 6500
series microprocessors.

You will probably want to have a good hex editor as well . A decent hex editor can be found at BreakPoint
Software, called Hex Workshop, at www.bpsoft.com.

Page 43 of 44

Future Versions
So what is planned in the future? Well , a whole lot is planned. This version was the first of many 6811
disassemblers to come. This version, Version 1.0, was originally written in Borland Pascal 7.0 and will be
the baseline standard for the DOS 16-bit platform. I have ported it to MS Visual C++ 5.0 and created a
DOS 32-bit version, which will soon be released as Version 1.2. It eliminates all of the current limitations
and is bounded only by available system memory. It uses a DLL class that I call DFC (Data File Converter)
to allow support for any source file format – binary, Intel Hex, Motorola Hex, etc. For formats that I
happen to not supply a DFC for, you simply need to write a DLL to handle your new format – no
recompili ng, no rebuilding, just make a DLL and run.

At the time I am writing this, the Version 1.2 works, but I would like to change the internal opcode seeker
to be a hash-table of hash-tables rather than a hash-table of arrays. For the 6811 it won’ t make much
difference, but for other processors like the 6816 and 68332, it makes a world of difference in disassembly
time. So you say, why not release it and then update it later. The reason is I’m creating a GDC class –
Generic Disassembler Class – which will allow disassemblers to be encompassed by a DLL. This will l ater
be used in the GenREP (Generic Reverse Engineering Platform) program that I plan to release as a
commercial product. The idea is that the program will not be dependent on any processor, any target
assembler, any file format, etc. You can simply load DLL files into the program at run-time.

So with this available, why do I still support Version 1.0? Well , Version 1.0 is a 16-bit application that can
run directly in DOS or DOS-Command Prompt mode. Version 1.2, although it is a DOS version, is a 32-bit
application and requires MS Windows 95, 98, NT, etc, and has to be run in a DOS Prompt Window. For
some, this isn’ t acceptable.

I am also writing a Version 2.0 that will be a Windows GUI for the disassembler. This will allow for easy
graphical entry and manipulation of Control Files, easy source editing, etc. It will basically be a front-end
for the 32-bit Version 1.2 of the disassembler.

I have also recently switched my personal machines over to Linux, abanding Microsoft almost entirely.
This means that before long, a Linux version will also be available and may actually beat the work-in-
progress Windows version. Currently, this application is a freeware application, but not an open-source
application. I am considering making it open-source when releasing the Linux platform, but haven’ t fully
decided yet.

As for keeping up with what version is which, basically the first part of the version number will denote its
platform – 1 = DOS, 2 = MS Windows, 3 = Linux Command Prompt, 4 = Linux X Windows GUI, etc.
Also, you might have suggestions or ideas for future versions – please send any suggestions/ideas to me.
And keep an eye on my website for future releases – see the Support section in this document on how to
locate my website and how to contact me via email .

Below is a list of what is planned with each version. Some of these have been put into place, others still
have to be worked in:

Version 1.0 – DOS 16-Bit
This version. Somewhat limited, but it runs in DOS on nearly any machine and is a great entry
level version.

Version 1.1 – DOS 16-Bit
This was an intermediate stepping stone version that was never released to the public. It added
multiple source files, has “spit” output mode capabiliti es, and a few other slight features – but was
never refined.

Page 44 of 44

Version 1.2 – DOS 32-Bit
Upgraded to a 32-bit application so there are no memory limits other than the machine’s physical
memory. DFC (Data File Converter) DLL’s were added to support any source data file type.
Multiple Source Files is supported, as is multiple Control Files. It can support the “spit” mode of
code-seeking. Mixed number bases is supported in the Control File. The disassembler has been
converted into a GDC (Generic Disassembly Class) that will l ater allow easy porting into GenREP
(Generic Reverse Engineering Platform) and will fascilit ate the development of disassemblers for
other processors. Since there are “no memory limits” , label names can be of any size and there can
be as many labels, branch references, indirects, and entry points as needed, and Indirect Data
Vectors are supported in addition to Indirect Code Vectors. All that is missing is a graphical front-
end. This version is basically finished except for changing the opcode table to be a hash table of
hash tables rather than a hash table of arrays. It will be released soon.

Version 2.0 – Windows 32-Bit (Win95, 98, NT, etc)
This is the graphical front-end that is “missing” on Version 1.2. It will allow editing of source data
files, text editing of disassembly output files – including keeping comments and user edits separate
from disassembly output so that if the disassembler is ever re-run on a file, you don’ t have to re-
edit everything, and a graphical interface for editing and entering the data into the Control File
without generating the Control File by hand.

Version 3.0 – Linux (Command Prompt)
This will be a port of Version 1.2 into the Linux environment. It is possible that the disassembler
might become open-source at this stage to allow migration to other Unix platforms.

Version 4.0 – Linux with X-Window GUI
This can be though of as either a port of 2.0 to Linux or as a wrapper for the 3.0 Linux version.

With the advent of GDC, it will be easy in the future for others to create modules for additional processors
and easily drop them into the program without having to modify or recompile the main program at all .
Once this gets further along, and the specifications and methodology have been defined, I have in mind
releasing a “development kit” for those wanting to develop disassemblers for other processors. The kit will
be free, but what I ask in exchange is that you submit any additional disassembler modules you create, so
they can be provided to the world to use free-of-charge.

Enjoy the disassembler. I hope it proves to be most helpful. Please visit my website (see the Support
section) and register. I enjoy tracking the progress of my software and like to see how many different
countries it ends up in. You can also “vote for” those versions that don’ t exist yet. Those with the greatest
number of requests will receive a higher priority in the programming/debugging process.

